UNIVERSIDADE DO SAGRADO CORAÇÃO

JULIANA MAZIERO AZANHA

ANÁLISES FILOGENÉTICAS BASEADAS NO DNA RIBOSSOMAL E MITOCONDRIAL DE ISOLADOS DE *Pythium insidiosum*

BAURU 2015

JULIANA MAZIERO AZANHA

ANÁLISES FILOGENÉTICAS BASEADAS NO DNA RIBOSSOMAL E MITOCONDRIAL DE ISOLADOS DE *Pythium insidiosum*

Trabalho de Conclusão do Curso apresentado ao Centro de Ciências da Saúde da Universidade do Sagrado Coração, como parte de requisitos para obtenção do título de bacharel em Biomedicina, sob orientação do Prof. Dr. Lucas Trevizani Rasmussen.

BAURU 2015

40010	Azanha, Juliana Maziero		
A991a	Análises filogenéticas baseadas no DNA ribossomal e mitocondrial de isolados de Pythium insidiosum / Juliana Maziero Azanha 2015. 70f. : il.		
	Orientador: Prof. Dr. Lucas Trevizani Rasmussen.		
	Trabalho de Conclusão de Curso (Graduação em Biomedicina) – Universidade do Sagrado Coração – Bauru – SP.		
	 Análises filogenéticas. DNA mitocondrial. DNA ribossomal. Oomiceto. Pythium insidiosum. Rasmussen, Lucas Trevizani. Título. 		

JULIANA MAZIERO AZANHA

ANÁLISES FILOGENÉTICAS BASEADAS NO DNA RIBOSSOMAL E MITOCONDRIAL DE ISOLADOS DE *Pythium insidiosum*

Trabalho de Conclusão do Curso apresentado ao Centro de Ciências da Saúde da Universidade do Sagrado Coração, como parte de requisitos para obtenção do título de bacharel em Biomedicina, sob orientação do Prof. Dr. Lucas Trevizani Rasmussen.

Banca examinadora:

Profa. Dra. Sandra de Moraes Gimenes Bosco Instituto de Biociências – UNESP

Prof. Dr. Lucas Trevizani Rasmussen Universidade do Sagrado Coração

Bauru, 02 de dezembro de 2015.

AGRADECIMENTOS

Agradeço primeiramente a Deus por me dado saúde e força para superar as dificuldades.

Aos meus pais, por me darem amor, apoio e por sempre acreditarem em mim.

Ao meu orientador e a minha banca examinadora pela oportunidade, suporte, incentivo, confiança e correções.

A Fapesp (Fundação de Amparo a Pesquisa) pelo incentivo financeiro, como bolsas e auxílios.

Aos meus amigos de turma e do Laboratório de Micologia Médica do Depto. de Microbiologia e Imunologia, IBB/UNESP, pela amizade, companheirismo e ajuda.

RESUMO

Pythium insidiosum é o agente etiológico da pitiose, uma doença que afeta humanos e animais, principalmente em países de clima tropical e subtropical. Este patógeno não é um fungo verdadeiro, pois pertence ao Reino Stramenopila, Filo Oomycota. Estudos moleculares têm sido realizados recentemente e vêm mostrando que o DNA mitocondrial, particularmente o gene da citocromo c oxidase (Cox II) é um bom marcador para estudos filogenéticos entre as espécies do gênero, bem como para avaliar a variabilidade intraespecífica. Fez-se a análise filogenética de 20 isolados de *P. insidiosum* provenientes de casos de pitiose equina, humana e canina de diferentes municípios do estado São Paulo. A pesquisa teve como objetivo fazer análises filogenéticas baseadas na região do DNA ribossomal, como a região ITS-1-5.8S-ITS-2 e a região D1 e D2 da subunidade 28S; e do DNA mitocondrial, gene da citocromo c oxidase II (COX II). Os isolados de Pythium insidiosum foram cultivados em tubos contendo Ágar Sabouraud Dextrose para que seus fragmentos fossem postos em Caldo Sabouraud Dextrose, sendo posteriormente utilizados nos procedimentos de extração de DNA. Com o DNA já extraído, análises da integridade e da concentração desse material genético foram realizadas para se prosseguir com a reação em cadeia da polimerase (PCR) usando primers e perfis de ciclagem específicos para cada região do DNA. A observação dos amplicons em gel de agarose com a posterior purificação desse produto tornou-se possível realizar o sequenciamento e as análises filogenéticas. Dessa forma, com base na nas árvores filogenéticas, a região ITS apresentou baixos bootstraps separando os isolados americanos dos isolados da Tailândia. A região da citocromo c oxidase II permitiu melhor separação geográfica dos isolados americanos dos isolados de P. insidiosum da Tailândia, no entanto observou-se que um isolado ambiental da Tailândia agrupou-se na árvore filogenética desse gene. O entendimento das relações filogenéticas auxilia na compreensão da distribuição geográfica deste patógeno, mas não distingue se há genótipos de P. insidiosum que causam a doença em animais e humanos.

Palavras-chave: Análises filogenéticas. DNA mitocondrial. DNA ribossomal. Oomiceto. *Pythium insidiosum.*

ABSTRACT

Pythium insidiosum is the etiological agent of pythiosis, a disease that affects human and animals, mainly in countries with tropical and subtropical climates. This pathogen is not a true fungi, it belongs to Stramenopila Kingdom, Oomycota Phylum. Molecular studies have been conducted recently and shown that mitochondrial DNA, particularly citochrome c oxidase (Cox II) is a good marker for phylogenetic analysis among species, as well as intraspecific variability analysis. It was made phylogenetic analysis among 20 isolates of P. insidiosum, from cases of equine, human and canine pythiosis from different counties of the state of São Paulo. The research aimed to make phylogenetic analysis based on ribosomal DNA region, as the ITS-1-5.8S-ITS-2 region and the D1 and D2 region of the 28S subunit; and mitochondrial DNA, cytochrome c oxidase gene II (COX II). Isolates of Pythium insiodiosum were cultivated in tubes containing agar Sabouraud Dextrose and fragments were put into Sabouraud Dextrose broth, subsequently used in DNA extraction procedures. With the DNA already extracted, analysis of the integrity and concentration of this genetic material were carried out to proceed with polymerase chain reaction (PCR) using specific primers and cycling conditions for each region analysed. The observation of amplicons on agarose gel with the subsequent purification of the product has become possible to perform the sequencing and the phylogenetic analysis. Thus, based on the phylogenetic trees, the ITS region has showed low bootstraps separating the American isolates of isolates from Thailand. The cytochrome c oxidase II region has allowed better geographical separation of the American and Thai isolates of the *P. insidiosum*, however it was observed that one environmental Thai isolate has grouped into American isolates by phylogenetic analysis with this gene. Understanding of the phylogenetic relationships may help in the comprehension of geographical distribution, but not enabled associations between the genotypes of *P. insidiosum* from animal and human diseases.

Keywords: Mitochondrial DNA. Oomycete. Phylogenetic analyses. *Pythium insidiosum.* Ribosomal DNA

LISTA DE ILUSTRAÇÕES

Figura 1: Hifas de P. insiodiosum cultivadas em Caldo SAB19	9		
Figura 2: Quantificação em gel2	3		
Figura 3: PCR-gradiente de temperatura para os primers FM58 e FM66 que	е		
amplificam o gene da citocromo c coxidase II (Cox-II) de Pythium insidiosum2	5		
Figura 4: PCR-gradiente de temperatura para os primers NL1 e NL4 que amplifican	n		
a região variável D1-D2 do RNA ribossomal, subunidade 28S	3		
Figura 5: PCR-gradiente de temperatura para os primers ITS4 e ITS5 que amplifican	n		
a região ITS1, gene 5.8S, e ITS2 do DNA ribossomal2	7		
Figura 6: Região ITS amplificada, com o tamanho do fragmento de	е		
aproximadamente 955pb28	3		
Figura 7: Região ITS amplificada, com o tamanho do fragmento de	Э		
aproximadamente 955pb29	9		
Figura 8: Região ITS amplificada, com o tamanho do fragmento de	Э		
aproximadamente 955pb	C		
Figura 9: Amplificação região do COX-II dos isolados de P.insidiosum, observando	0		
tamanho de aproximadamente 609pb3	1		
Figura 10: Amplificação da região D1 e D2	2		
Figura 11: Purificação dos fragmentos da região ITS dos isolados de P.insidiosum,			
observando o tamanho de aproximadamente 955pb33	3		
Figura 12 Purificação dos fragmentos da região do COX-II dos isolados de	е		
P.insidiosum, observando o tamanho de aproximadamente 609pb34	4		
Figura 13: Purificação dos fragmentos da região D1 e D2 dos isolados de	е		
P.insidiosum, observando o tamanho de aproximadamente 786pb	5		
Figura 14: Análise filogenética da região ITS3	9		
Figura 15: Análise filogenética da região Cox-II40)		
Figura 16:A-) Análise filogenética da região D1-D2 do DNA ribossomal42	2		
Figura16:B-) Análise filogenética da região D1-D2 do DNA	٩		
ribossomal43	3		

LISTA DE TABELAS

Tabela 1: Concentrações de DNA ($\eta g/\mu L$) e valores das razões A_{260}/A_{230} e A_{260}/A_{230}	A ₂₈₀
dos diferentes isolados de Pythium insidiosum	22
Tabela 2: Identidade molecular das sequências de ITS, Cox-II e D1-D2 dos isolac	dos.
	36

LISTA DE QUADROS

Quadro 1: Isolados de Pythium insidiosum que foram empregados nas extrações de
DNA, de acordo com a espécie animal que permitiu o isolamento e sua procedência.
Quadro 2: Sequência dos primers da região ITS e da região D1e D2 do rDNA e do
gene Cox II do mtDNA empregados para as análises moleculares27
Quadro 3: Lista de isolados de Pythium insidiosum empregados para as análises
filogenéticas da região ITS44
Quadro 4: Lista de isolados de Pythium insidiosum empregados para as análises
filogenéticas da citocromo c oxidase (CoxII)48
Quadro 5: Lista de isolados de Pythium insidiosum empregados para as análises
filogenéticas da região D1-D251

LISTA DE ABREVIATURAS

dNTP: Desoxirribonucleotídeos Trifosfato

EDTA: Ácido etilenodiamino tetra-acético

%: Porcento

ηg: Nanogramas

°C: Grau Celsius

µL: Microlitros

H₂O: Água

HCI: Ácido Clorídrico

MgCl_{2:} Cloreto de Magnésio

ml: Mililitros

NaCI: Cloreto de Sódio

nm: nanômetro

pb: Pares de base

PCR: Reação em cadeia da polimerase

Rpm: Rotação por minuto

SAB: Sabouraud

SDS: Dodecil sulfato de sódio

1	INTRODUÇÃO	.10
2	OBJETIVOS	.17
3	PROCEDIMENTOS REALIZADOS	.18
3.1	LOCAL DE REALIZAÇÃO DAS PESQUISAS E ISOLADOS AVALIADOS	.18
3.2	EXTRAÇÃO DE DNA	.19
3.3	QUANTIFICAÇÃO DO DNA GENÔMICO	.21
3.4	REAÇÃO EM CADEIA DA POLIMERASE (PCR)	.24
3.5	VISUALIZAÇÃO DO AMPLICON POR ELETROFORESE EM GEL	DE
AGARC	DSE	.28
3.5.1	ITS	.28
3.5.2	COX-II	.30
3.5.3	D1-D2	.31
3.6	PREPARO DOS AMPLICONS PARA A REAÇÃO	DE
SEQUE	ENCIAMENTO	.32
3.7	SEQUENCIAMENTO DOS AMPLICONS	.35
3.8	ANÁLISES FILOGENÉTICAS	.36
4	RESULTADOS E DISCUSSÃO	.37
4.1	ANÁLISES FILOGENÉTICAS	.37
	CONCLUSÃO	.52
	REFERÊNCIAS BIBLIOGRAFICAS	.53
	APÊNDICE A - SEQUÊNCIA PARCIAL DE OLIGONUCLEOTÍDIOS	DA
REGIÃ	O ITS-1, 5.8S E ITS-2 DO DNA RIBOSSOMAL	.57
	APÊNDICE B - SEQUÊNCIA PARCIAL DE OLIGONUCLEOTÍDIOS	DA
CITOC	ROMO C OXIDASE (COX-II) DO DNA MITOCONDRIAL	.62
	APÊNDICE C - SEQUÊNCIA PARCIAL DE OLIGONUCLEOTÍDIOS	DA
REGIÃ	O D1-D2 DA SUBUNIDADE 28S DO DNA RIBOSSOMAL	.66

SÚMARIO

1 INTRODUÇÃO

Pythium é um gênero complexo da classe dos Oomycetes que inclui cerca de 120 espécies descritas, estas podendo ocupar ambientes terrestres e aquáticos. (VAN der PLAATS-NITERINK et al.,1981; DICK et al.,1990).

Dentre os membros desse gênero há espécies cujos nichos ecológicos podem ser diversos, desde seres saprófitos, ou seja, que se alimentam de substratos orgânicos em decomposição; como também aqueles benéficos por serem agentes de controle biológico ou auxiliadores na produção ácidos graxos insaturados utilizados como suplemento dietético para o uso humano. (GANGHI; WEETE, 1991; MARTIN; LOPER, 1999). Além disso, existem espécies que são patogênicas para as plantas, afetando o crescimento dessas, como também de animais como peixes, camarões, larvas, algas, mosquitos e até mesmo mamíferos o qual é prejudicado pela espécie *Pythium insidiosum.* (de COCK et al., 1987).

Pythium insidiosum é um oomiceto aquático que pertence ao Reino Stramenopila, filo Oomycota, classe Oomycetes, ordem Pythiales e família Pythiaceae. Ele é o agente etiológico da pitiose, uma doença emergente e considerada fatal em alguns casos mais severos, que afeta animais, inclusive o ser humano. (GAASTRA et al., 2010). A doença ocorre predominantemente em países de clima tropical e subtropical. É caracterizada por causar lesões granulomatosas nos tecidos cutâneo e subcutâneo. Já foram reconhecidos casos dessa enfermidade em gatos, cães, ovinos, bovinos e equinos, sendo esta última a mais frequentemente acometida. (SANTURIO et al., 2006). Também foi detectado um caso de pitiose em uma ave silvestre (*Plegadis chihi*, "caraúna de cara branca"), bem como foi relatado um caso de pitiose humana por *Pythium aphanidermatum*. (PESAVENTO et al., 2008; CALVANO et al., 2011).

Não há pré-disposição por raça, idade e sexo para o desenvolvimento da enfermidade, sendo esta determinada principalmente pela permanência do animal em áreas alagadas onde o patógeno vive. (MENDOZA et al., 1993).

A infecção é adquirida em ambiente aquático com presença de vegetação, local este favorável à produção de zoósporos biflagelados, forma infectante do patógeno. (MENDOZA et al., 1993). O ciclo de vida deste patógeno envolve a colonização de material vegetal, onde se desenvolvem as hifas de *P. insidosum*. Na extremidade dessas hifas são formados esporângios, que em seu interior contém os zoósporos biflagelados, oriundos de reprodução assexuada. Uma vez liberados, os zoósporos nadam até se encistarem em tecido vegetal, onde emitem um tubo germinativo para recomeçar seu ciclo. Se o animal penetrar nesse ambiente, o patógeno se desenvolverá no tecido subcutâneo e dará origem à doença. (MENDOZA et al., 1993). A penetração da hifa no tecido se dá por ação de proteinases, bem como de força mecânica que essas hifas exercem. (RAVISHANKAR et al., 2001). A literatura menciona que o hospedeiro animal deve ter uma lesão prévia que sirva de porta de entrada ao zoósporo, entretanto, trabalhos demonstram que o patógeno possui tropismo por folículo piloso, não havendo a necessidade de lesão prévia. (MENDOZA et al., 1993; SANTURIO et al., 1998).

A doença em humanos possui três formas clínicas: lesões granulomatosa de tecidos cutâneos e subcutâneos; forma sistêmica, caracterizada pelo desenvolvimento de arterite crônica, oclusão arterial e gangrena; e forma ocular, que envolve desde ceratites até severas úlceras que acometem todo o globo ocular. (THIANPRASIT et al., 1996).

A pitiose é de difícil diagnóstico e tratamento, sendo necessários grandes procedimentos cirúrgicos. (TRISCOT et al., 1993). O primeiro caso da doença em humanos foi constatado na Tailândia, na década de 80, país que registra a maior casuística dessa doença em humanos. (THIANPRASIT et al., 1996). Já o primeiro caso brasileiro foi recentemente diagnosticado e aconteceu em um indivíduo do sexo masculino, que morava no interior do estado de São Paulo. Ele se queixava de úlcera cutânea na perna esquerda com evolução de três meses. A lesão iniciou-se com uma pústula, uma semana após uma pescaria em lago de águas paradas, no qual permanecera com as pernas submersas. O diagnóstico inicial foi de celulite bacteriana, sendo o paciente tratado sem melhoras. Procedeu- se à biópsia cutânea que no exame anatomopatológico mostrou micro-organismo sugestivo de hifa não septada, compatível com fungo zigomiceto. O paciente foi então tratado e não apresentou melhora. Uma grande cirurgia foi realizada e a cultura de fragmentos dessa lesão permitiu o isolamento do agente, o qual foi corretamente identificado após o sequenciamento da região ITS-5.8S do DNA ribossomal. (BOSCO et al., 2005; MARQUES et al., 2006).

A identificação e classificação de *Pythium insidiosum* baseada apenas em características morfológicas não é uma tarefa fácil, pois requer micologista treinado.

Morfologicamente os oomicetos podem compartilhar muitas características em comum com os fungos verdadeiros, entretanto os oomicetos são filogeneticamente relacionados às algas. (ALEXOPOULOS et al., 1996). Dentre várias características que diferem os oomicetos dos fungos verdadeiros destacam-se: i) ausência de quitina e a presença de celulose na parede celular dos oomicetos, ii) ausência de ergosterol na membrana plasmática dos oomicetos, iii) zoósporos biflagelados (nos fungos do Filo Chytridiomycota os zoósporos são uniflagelados), iv) mitocôndrias com crista tubular (enquanto que nos fungos verdadeiros são achatadas), dentre outras características bioquímicas. (ALEXOPOULOS et al., 1996).

A biologia molecular vem proporcionando grandes avanços no estudo dos fungos, de uma maneira geral e também vem auxiliando no estudo de *Pythium insidiosum*. É utilizada tanto para finalidade diagnóstica, permitindo diagnóstico precoce da doença, bem como auxilia na identificação do patógeno. (GROOTERS; GEE, 2002).

Para garantir esta aplicabilidade, as técnicas da biologia molecular (como a extração de DNA, as reações de PCR e o sequenciamento do material genético e sua análise), necessitam de um adequado processamento para proporcionar resultados satisfatórios. Dessa forma, LOHNOO et al. (2014) compararam diferentes técnicas relacionadas à extração do DNA de P. insidiosum, a salt-extraction, rapidextraction e extração convencional (empregando fenol-clorofórmio), levando em consideração o tempo de duração, o preço, o descarte, a periculosidade dos reagentes utilizados e a qualidade e quantidade do DNA obtido em cada uma delas. A extração pela técnica chamada salt-extraction consistiu no tratamento da massa fúngica em homogeneizador de tecido empregando-se glass-beads e solução tampão de extração com maior concentração de NaCl. A extração pela técnica rapidextraction consistiu na fervura prévia da massa fúngica por 30 minutos seguidos de agitação mecânica em vortex por 2 minutos e a empregou-se fenol-clorofórmioálcool isoamílico. A extração pela técnica chamada convencional empregou a maceração de massa fúngica em nitrogênio líquido e a seguir o pó obtido foi submetido à extração com fenol-clorofórmio-álcool isoamílico. Concluíram que a rapid-extraction, apesar de ser um protocolo rápido, a quantidade e a qualidade do material genético extraído foi bastante limitada, sendo o protocolo que mais degradou o DNA ao final da extração. Tanto a técnica de salt-extraction como a chamada convencional mostraram DNA com mesma qualidade, sendo um pouco

mais degradado na primeira técnica. No entanto, apesar de degradar um pouco mais que a metodologia convencional, os autores destacam essa técnica como sendo a mais rápida e que não emprega reagentes caros e perigosos à saúde e ao meio ambiente (LOHNOO et al., 2014).

A região ITS (*Internal Transcribed Spacer*) vem sendo cada vez mais utilizada para identificação molecular dos fungos, sendo inclusive considerada "código de barra" (*barcoding*) dos fungos, auxiliando na identificação molecular. (IWEN et al., 2002; SCHOCH et al., 2012).

Além do uso no diagnóstico e na identificação, tais ferramentas vêm auxiliando em estudos filogenéticos os guais permitiram a verificação de clusters geneticamente distintos de isolados de Pythium insidiosum de diferentes continentes. Nesse sentido, Schurko et al. (2003) realizaram uma análise filogeográfica utilizando-se do PCR-RFLP (PCR-Restriction Fragment Length Polymorphism) no sequenciamento das região IGS (Integenic Spacer) do DNA ribossomal. Esta análise se baseou na presença de diferenças genéticas entre os isolados nativos de P. insidiosum entre as áreas geográficas tais como Ásia, Austrália e Américas. Os isolados avaliados foram divididos em três clusters distintos e apenas um isolado não foi incluído em nenhum desses grupos. Verificou-se que o cluster l é constituído de dezesseis isolados das Américas (Costa Rica, Brasil, Haiti e EUA); já o cluster II possui sete isolados da Ásia (Índia, Japão, Tailândia, Nova Guiné e Papua) e da Austrália; e o *cluster* III incluem dois isolados tailandeses e um norte americano. Este último grupo apresenta uma maior distância em relação aos clusters I e II os quais são mais próximos entre si, evidenciando, desta forma, uma variabilidade intraespecífica na espécie P. insidiosum. (SCHURCKO et al., 2003).

A região ITS, como também outros genes do DNA ribossomal são utilizados para estudos filogenéticos. Apesar de ser amplamente utilizada para identificação fúngica, essa região não permitiu a discriminação das cepas do *P. insidiosum* em grupos genéticos distintos, como observado em isolados ambientais e clínicos de *P. insidiosum* avaliados na Tailândia. (KAMMARNJESADAKUL et al., 2011).

Por isso, outra abordagem para os estudos relacionados à filogenia de *P. insidiosum* vem sendo representada pela utilização do DNA mitocondrial. (MARTIN, 2000). A mitocôndria é uma organela citoplasmática da célula eucariota que possui seu DNA próprio (mtDNA) e existem várias mitocôndrias em cada célula, sendo assim, inúmeras cópias de mtDNA são encontradas em uma única célula. O mtDNA

é distinto do DNA genômico nuclear. Em geral, o mtDNA possui tamanho e estrutura que varia entre diferentes organismos eucariotos. Por exemplo, em animais possui aproximadamente 16 Kb e codificam proteínas envolvidas no transporte de elétrons e na fosforilação oxidativa. Além disso, codifica RNA ribossomal (16S, 12S) e RNA transportador (22S). (VAZ JR, 2002).

Em fungos, o tamanho do mtDNA é variável em função de uma série de inserções/deleções, as quais foram identificadas como *íntrons* localizados em certos genes, particularmente os que codificam a citocromo c oxidase subunidades 1 e 2. (BIRLEY & CROFT, 1986).

O mtDNA também esta envolvido nos processos de microevolução, dessa forma, auxilia no entendimento de aspectos biológicos e evolutivos de uma grande variedade de organismos, em relação à filogenia desses. (AVISE et al., 1987).

Sobre o gênero *Pythium*, uma das características do seu genoma mitocondrial que este possui uma repetição invertida, em uma proporção grande, de aproximadamente 80% do genoma mitocondrial. Essa repetição invertida tem ocorrência em grupos intimamente relacionados com os Oomycetes indicando ancestralidade, sua modificação ou perda dentro dos Oomycetes pode ser tratada como um caráter de avaliação filogenética (MCNABB et al., 1987; MARTIN, 2000).

Em relação ao formato do mtDNA do gênero *Pythium*, a maioria das espécies foram identificados com genoma mitocondrial circular, porém existem espécies com genoma linear, como é o caso *Pythium irregulare*. Além disso, também há um número de espécies com mtDNA circular e linear, o qual este último se apresenta em menor quantidade, aparecendo em alguns isolados como de *Pythium oligandrum e P. irregulare*, porém esta característica evidenciada tem uma significância filogenética incerta. (MARTIN, 1995).

Entre os genes do DNA mitocondrial, a COX II (citocromo c oxidase) é a mais utilizada nos estudos de diferenciação de espécies. Este gene codifica proteínas metabólicas e são menos ambíguos do que a região ITS para as análises filogenéticas. (MARTIN, 2000). A utilização de sequências de COX II gera uma árvore filogenética com maior resolução do que de análise da região ITS. Portanto, esse gene mitocondrial pode ser considerado como um novo marcador molecular para a análise filogenética de *P. insidiosum*, como foi demonstrado por KAMMARNJESADAKUL et al. (2011), que analisaram as árvores filogenéticas do gene da COX II como também da sequência ITS dos isolados clínicos e ambientais de *P. insidiosum* da Tailândia. Foi observado que em relação ao gene da Cox II houve agrupamento de três *clusters*, A, B e C, sendo o mesmo observado nas análises da região ITS. Entretanto, o gene Cox II permitiu melhor distinção entre os isolados dos *clusters* B e C quando comparados com a região ITS. Os autores concluem que as análises baseadas no gene da Cox II permitem melhor separação em nível intraespecífico. (KAMMARNJESADAKUL et al., 2011).

AZEVEDO et al. (2012) realizaram análises filogenéticas com isolados de *P. insidiosum* provenientes do Brasil (região centro-oeste e sul), bem como incorporaram sequencias, dessas regiões gênicas, de isolados dos EUA, Costa Rica e Tailândia, obtidas do GenBank (<u>www.ncbi.nlm.nih.gov/genbank</u>). Foi observado, semelhantemente ao trabalho de KAMMARNJESADAKUL et al. (2011), que a árvore filogenética obtida pela análise do gene Cox II permitiu melhor resolução intraespecífica quando comparada à região ITS.

BRIARD et al. (1995) realizaram análises filogenéticas entre espécies do gênero *Pythium* e *Phytophthora* spp., baseadas na análise do sequenciamento de 177 pares de base da região D-2 da subunidade maior (28S) do rDNA, e observaram agrupamento das espécies do gênero *Pythium* em um mesmo clado. Em fungos verdadeiros, a região D1/D2 localiza-se na subunidade 28S do rDNA e esta região vem se mostrando eficiente também para identificação molecular e estudos filogenéticos de leveduras do gênero *Candida* spp., *Cryptococcus* spp. *Rhodotorula* spp. e *Saccharomyces* spp. (BRIARD et al., 1995; ECHEVERRIGARAY et al., 2013; HAYASHI et al., 2013; SATOH, et al., 2013). Embora amplamente utilizada para identificação e análises filogenéticas em fungos, a região D1/D2 não foi devidamente explorada em *Pythium insidiosum*.

THONGSRI et al. (2013) realizaram a padronização de uma técnica para diagnóstico da pitiose denominada *single-Tube Nested PCR*, na qual consiste da utilização de dois pares de *primers*, denominados *outer primers* (CPL6/CPR8) e *inner primers* (YTL1/YTR1) e dois perfis de ciclagem, um primeiro com 30 ciclos empregando temperatura de anelamento a 68°C e a seguir um segundo ciclo empregando 57°C como temperatura de anelamento. Para a amostra testada ser considerada positiva, deve ser observado um padrão de 4 bandas nos tamanhos 512, 452, 340 e 240 pb. Os autores realizaram testes de sensibilidade e especificidade (testando DNA de diferentes fungos e bactérias, inclusive testando outras espécies de *Pythium: P. middletoni, P. aphanidermatum, P. ultimum e P.*

deliense) e obtiveram as 4 bandas somente para *P. insidiosum.*(THONGSRI et al.,2013).

2 OBJETIVOS

Realizar análises filogenéticas baseadas no sequenciamento do gene Cox-II do mtDNA e da região ITS do rDNA de diferentes isolados clínicos de *Pythium insidiosum*.

3 PROCEDIMENTOS REALIZADOS

3.1 LOCAL DE REALIZAÇÃO DAS PESQUISAS E ISOLADOS AVALIADOS

Os ensaios foram realizados no Laboratório de Micologia Médica do Departamento de Microbiologia e Imunologia do Instituto de Biociências da UNESP/Botucatu.

Foram avaliados 20 isolados de *Pythium insidiosum*, um proveniente do primeiro caso da doença em humanos, dezoito de casos de pitiose equina e um vindo de um caso diagnosticado na espécie canina. Os isolados vêm sendo mantidos em tubos contendo ágar Sabouraud e subcultivados a cada 20 dias e mantidos em estufa a 27°C. Quadro 1 sumariza os dados sobre espécie animal e procedência dos isolados de *P. insidiosum* que foram avaliados.

Isolados de <i>Pythium insidiosum</i> (<i>P.i.)</i> e identificação laboratorial	Espécie	Procedência
<i>P.i.</i> B-01	Humana	Paraguaçu Paulista/SP
<i>P.i.</i> Eq-2	Equina	Jaú/SP
<i>P.i.</i> Eq-3	Equina	Barra Bonita/SP
<i>P.i.</i> Eq-4	Equina	Itápolis/SP
<i>P.i.</i> Eq-5	Equina	Porto Feliz/SP
<i>P.i.</i> Eq-6	Equina	Piracicaba/SP
<i>P.i.</i> Eq-7	Equina	Anhembi/SP
<i>P.i.</i> Eq-8	Equina	Paranapanema/SP
<i>P.i.</i> Eq-9	Equina	Piracicaba/SP
<i>P.i</i> . Eq-10	Equina	Paranapanema/SP
<i>P.i.</i> Eq-11	Equina	Piracicaba/SP
<i>P.i.</i> Eq-12	Equina	Bofete/SP
<i>P.i.</i> Eq-13	Equina	Piracicaba/SP
<i>P.i</i> . Eq-15	Equina	Igaraçú de Tietê/SP
<i>P.i.</i> Eq-16	Equina	Pereiras/SP
<i>P.i</i> . Eq-20	Equina	Jaú/SP
<i>P.i.</i> Eq-21	Equina	Laranjal Paulista/SP
<i>P.i.</i> Eq-22	Equina	Araçatuba/SP
<i>P.i.</i> Eq-24	Equina	São Pedro/SP
P.i. Cão	Canina	Boituva/SP

Quadro 1: Isolados de *Pythium insidiosum* que foram empregados nas extrações de DNA, de acordo com a espécie animal que permitiu o isolamento e sua procedência.

Fonte: Elaborado pela autora

3.2 EXTRAÇÃO DE DNA

Na proposta inicial, o protocolo de extração seria o descrito por McCULLOUGH et al., (2000) com algumas modificações. Em função dos resultados obtidos, houve a necessidade de se testar novos protocolos.

A extração de DNA foi uma etapa do procedimento o qual ocorreu alguns empecilhos, desses a dificuldade de rompimento da parede celular do *P.insidiosum* composta por celulose, tendo a necessidade da escolha de vários outros métodos, como o uso do nitrogênio líquido, choque térmico provocado pela mudança brusca de temperatura, de 37°C para -80°C e a agitação no aparelho Precellys 24 (Bertin Techonologies) que predominou na última extração realizada.

O protocolo empregado então foi o proposto por VAN BURIK (1998) o qual se realizou da seguinte maneira: os fragmentos de hifas com cinco a sete dias de crescimento em ágar Sabouraud a 37°C foram ressuspendidos em caldo SAB Dextrose em agitação de 150 rpm a 37°C por 4 dias, para depois ser lavado com solução salina a 0,85%.

Quando há a retirada de fragmentos do material microbiológico, através de alças, vem aderido ao fungo, meio de cultura. Por esse motivo, ao invés, dessas hifas com ágar ser diretamente empregadas para a extração de DNA, estas foram colocadas em erlenmeyers com 60mL de Caldo SAB para serem agitados. Obtendose micélios os quais foram lavados com solução salina, a fim de ser retirado o caldo SAB e assim, prosseguir a extração. Como ilustra a Figura 1.

Figura 1: Hifas de *P. insiodiosum* cultivadas em Caldo SAB, em agitação por 4 dias.

Fonte: Elaborada pela autora

Após foi adicionado aproximadamente 0,1 g de hifas em 500µL de solução tampão (TrisHCI 50mM, EDTA 50mM, SDS 2% e 2-mercapetanol) e 400 µL da mistura fenol, clorofórmio e álcool isoamílico (PHE:CHL:IAA) na proporção 25:24:1 já contendo as *glass beads* nos microtubos (425-600 microns, acid washed, Sigma-Aldrich), em seguida levou-se a solução à agitação em aparelho Precellys 24 (Bertin Techonologies) com 3 ciclos alternados de 40 segundos de agitação e 20 segundos de descanso, logo após seguiu-se com a centrifugação O uso de tampão de extração, constituído de 100mM Tris-HCI, 20mMEDTA, 1% SDS, 0,2% mercaptoetanol, foi utilizado com a finalidade de promover a saída do DNA da célula, o controle de pH, inibição de DNAses e desnaturação de proteínas. Além desse tampão, a adição de PHE:CHL:IAA na solução fez com que houvesse a extração de lipídios, polissacarídeos e proteínas os quais através da centrifugação foram precipitadas e o DNA dissolvido na solução orgânica, considerado sobrenadante.

O sobrenadante foi coletado para neste ser adicionado, dependendo do volume que se obteve, a quantidade similar da mistura de fenol, clorofórmio e álcool isoamílico na proporção 25:24:1. Centrifugou-se novamente, para depois o sobrenadante ser coletado e assim ser posta a mistura de clorofórmio e álcool isoamílico (CHL:IAA) na proporção de 24:1 em igual volume ao do obtido no sobrenadante. A mistura foi homogeneizada por inversão dos tubos e a seguir centrifugada a 14.000 rpm à 4°C por 15 minutos. Todos os procedimentos de centrifugação obedeceram a esses parâmetros. Coletou-se o sobrenadante em novo tubo e foi adicionado proporcional volume de isopropanol gelado e 10 µL de acetato de sódio para promover a precipitação de sais e do material genético. Deixou-se os tubos na geladeira *overnight* para posteriormente centrifugar e se obter o pellet, que depois foi lavado duas vezes com etanol 70% gelado o qual dificulta a ressuspensão do DNA e faz dessalinização dessa molécula e a remoção dos resíduos.

Eluiu-se o DNA em 100 µL de água MilliQ autoclavada. A partir deste protocolo, acarretou-se melhores concentrações e integridade do DNA observados na quantificação e assim pode ser dada a sequencia do projeto.

Resultados semelhantes ao se empregar fenol, clorofórmio e álcool isoamílico foram obtidos por LOHNOO et al. (2014) ao testarem três protocolos de extração de DNA para *P. insidiosum*, na Tailândia, sendo que em dois destes protocolos foram empregados a mistura PHE:CHL:IAA.

3.3 QUANTIFICAÇÃO DO DNA GENÔMICO

Foi feita em gel de agarose a 2% empregando-se o marcador de peso molecular DNA Low Mass® (Invitrogen) para avaliação da integridade da molécula de DNA. Após a corrida eletroforética, o gel foi submetido à luz ultra-violeta e fotografado para registro da imagem. Como corante intercalante do DNA utilizou-se o SYBR® Safe DNA Gel Stain (Invitrogen) ao invés de brometo de etídio. Além da quantificação em gel, também se realizou a quantificação em espectrofotômetro NanoVue (GE Healthcare) em comprimento de onda de 260 nm.

O principal motivo da necessidade de fazer várias extrações, com diferentes métodos, se deve a concentração final do DNA e sua integridade, pois se essas não estiverem em valores adequados e satisfatórios, problemas ao realizar o PCR e o sequenciamento irão se originar posteriormente.

Com o protocolo de Van Burik (1998), o resultado da quantificação foi satisfatório, tanto na análise pelo NanoVue (GE Healthcare) quanto em gel de agarose. A Tabela 1 mostra o rendimento de DNA obtido através das extrações a partir da extração com fenol, clorofórmio e álcool isoalmílico, bem como as razões A₂₆₀/A₂₃₀ e A₂₆₀/A₂₈₀. Na Figura 2 observa-se o rendimento do material genético e sua integridade, através da visualização de bandas e a comparação com o marcador de peso molecular DNA Low Mass® (Invitrogen).

isolados de Pythium insidiosum	[DNA]	A ₂₆₀ /A ₂₃₀	A ₂₆₀ /A ₂₈₀
B-01	53,0	1,583	1,963
Eq-2	459,0	2,481	2,054
Eq-3	408,5	2,561	2,027
Eq-4	79,0	2,548	1,881
Eq-5	557,0	2,657	2,025
Eq-6	381,0	2,384	2,003
Eq-7	2700,0	2,574	2,096
Eq-8	1200,0	2,547	2,063
Eq-9	1472,0	2,573	2,070
Eq-10	3892,0	2,527	2,094
Eq-11	3469,0	2,573	2,075
Eq-12	1010,0	2,584	2,079
Eq-13	2873,0	2,481	2,170
Eq-15	986,0	2,526	2,191
Eq-16	485,0	2,545	2,167
Eq-20	2988,0	2,439	2,151
Eq-21	1860,0	2,514	2,188
Eq-22	999,0	2,485	2,151
Eq-24	2572,0	2,572	2,178
Cão-1	531,5	1,132	1,131
	551,5	1,102	1,151

Tabela 1: Concentrações de DNA (ηg/μL) e valores das razões A₂₆₀/A₂₃₀ e A₂₆₀/A₂₈₀ dos diferentes isolados de *Pythium insidiosum*.

Fonte: Elaborada pela autora

As razões de A_{260}/A_{230} que mostram valores acima de 2,4 indicam que a amostras possui muito RNA. Já as razões A_{260}/A_{280} que mostram valores abaixo de 1,5 indicam que a amostras possui muita proteína.

Sendo que, o isolado Cão, por apresentar razão A₂₆₀/A₂₈₀, abaixo de 1,5 possui na sua amostra muita proteína, mas em relação razão de A₂₆₀/A₂₃₀ se estabelece dentro dos valores de referência. Entretanto não se repetiu o procedimento da extração do DNA para este isolado.

Figura 2: Quantificação em gel. 1:1- DNA Low Mass ladder® (Invitrogen)2=Eq-02; 3=Eq-03; 4=Eq-04; 5=Eq-05; 6- Eq-06; 7=Controle(Levedura).2: 1=DNA Low Mass ladder® (Invitrogen); 2=Eq-07; 3=Eq-08; 4= Eq- 09; 5= Eq-10; 6=Eq-11; 7=Eq-12. 3: 1-DNA Low Mass ladder® (Invitrogen) 2=B-01; 3=Eq-13; 4=Eq-15; 5=Eq-16; 6- Eq-20; 7= Eq-21; 8= Eq-22; 9= Eq-24; 10= Cão; 12=Controle (Eq-11 diluído); 13= Controle (Levedura).

Fonte: Elaborada pela autora

Através da visualização dos géis, com ilustra a Figura 2 percebe-se um arraste, em todas as amostras, indicando a possível presença de DNA degradado. Entretanto, três bandas se destacam possuindo uma intensidade próxima a da primeira banda do marcador, indicando que as concentrações estão acima de 50ηg/μL.

É visto também, valores elevados nas concentrações para alguns isolados, com base na Tabela 1, tendo a necessidade de diluir esse material para 100ηg/μL. Somente após a diluição que se pode continuar com a próxima etapa: o PCR.

3.4 REAÇÃO EM CADEIA DA POLIMERASE (PCR)

A caracterização molecular dos isolados foi realizada baseando-se na região do DNA ribossomal (rDNA), envolvendo a região codificadora 5.8S e as regiões variáveis ITS (*Internal Transcribed Spacer*) 1 e 2 e a região codificadora da citocromo c oxidase (Cox II) do mtDNA.

Foram empregadas reações de PCR com os *primers* universais para fungos ITS4/ITS5, como proposto por WHITE et al. (1990) para amplificação das regiões ITS1-5.8S e ITS2 e os *primers* FM58/FM66 para amplificação da região do mtDNA, como proposto por KAMMARNJESADAKUL et al. (2011).

A região D1 e D2 contida no gene 28S do DNA ribossomal também foi avaliada para a caracterização molecular.

A Taq DNA Polimerase da Invitrogen ® foi usada nos primeiros PCRs, porém como no laboratório, onde se realizou a pesquisa, possuía a GoTaq® Green Master Mix (Promega), esta substituiu a outra Taq, pelo motivo do resultado do PCR, visto pelo gel, aparecer bandas com maior intensidade.

A mudança da Taq DNA polimerase recombinante (Invitrogen) para a GoTaq® Green Master Mix (Promega), promoveu a necessidade de realizar gradientes para as três regiões pesquisadas (ITS, D1-D2 e COX-II). Com fins, principalmente de minimizar a possiblidade de aparecimento de bandas inespecíficas, fato ocorrido com o ITS.

Para a reação de PCR-gradiente da região do COXII, D1-D2 e ITS, as temperaturas empregadas na PCR-gradiente foram:

1 - 50,0°C	4 - 51,9°C	7 - 56,5°C	10 - 61,0°C
2 - 50,2°C	5 - 53,3°C	8 - 58,8°C	11 - 61,9°C
3 - 50,8°C	6 - 54,8°C	9 - 69,7°C	12 - 62,5°C

Os intervalos de 50°C a 62°C foram adotados, possuindo como base a temperatura de *melting* do *primer* expressa no site da NCBI

(<u>http://www.ncbi.nlm.nih.gov/tools/primer-blast/</u>) e também a melhor temperatura exibida no manual da Taq polimerase.

De acordo com tamanho do fragmento da região amplificada e do *primer* é definido o tempo de *annealing* e de extensão, variando entre um minuto e meio a dois minutos.

As Figuras 3, 4 e 5 exibem os gradientes das três regiões avaliadas.

Figura 3: PCR-gradiente de temperatura para os primers FM58 e FM66 que amplificam o gene da citocromo c coxidase II (Cox-II) de Pythium insidiosum. Observar a ausência de amplificação a partir do número e bandas únicas. 1 =Marcador molecular de 1kb; 2 = 50,0°C; 3 = 50,2°C; 4 = 50,8°C; 5 = 51,9°C; 6 = 53,3°C; 7 = 54,8°C; 8 = 56,5°C; 9 = 58,1°C; 10 = 59,7°C; 11 = 61,0°C; 12= 61,9°C; 13 = 62,5°C.; 14= DNA Low Mass ladder® (Invitrogen).É notável, que os números 7 e 8 obtiveram bandas mais reluzentes, concluindo que a temperatura de melhor annealing seria entre 54°C a 56°C, isto é, 55°C foi a adotada.

Fonte: Elaborada pela autora

Figura 4: PCR-gradiente de temperatura para os *primers* NL1 e NL4 que amplificam a região variável D1-D2 do RNA ribossomal, subunidade 28S. Observar amplificação de banda única nas temperaturas correspondentes aos números 2 ao 13; 1 = DNA Low Mass ladder® (Invitrogen); 2 = 50,0°C; 3 = 50,2°C; 4 = 50,8°C; 5 = 51,9°C; 6 = 53,3°C; 7 = 54,8°C; 8 = 56,5°C; 9 = 58,1°C; 10 = 59,7°C; 11 = 61,0°C; 12= 61,9°C; 13 = 62,5°C.; 14= DNA 100 pb Ladder®. É notável, que os números 10 e 11 obtiveram bandas mais reluzentes e definidas, concluindo que a temperatura de melhor *anelamento* seria 60°C a qual foi a adotada.

Fonte: Elaborada pela autora

Figura 5: PCR-gradiente de temperatura para os primers ITS4 e ITS5 que amplificam a região ITS1 (Internal Transcribed Spacer 1), gene 5.8S, e ITS2 (Internal Transcribed Spacer 2) do DNA ribossomal. Observar amplificação de 3 bandas e ausência de amplificação nas temperaturas correspondentes aos números 11, 12 e 13. 1 = DNA Low Mass ladder® (Invitrogen); 2 = 50,0°C; 3 = 50,2°C; 4 = 50,8°C; 5 = 51,9°C; 6 = 53,3°C; 7 = 54,8°C; 8 = 56,5°C; 9 = 58,1°C; 10 = 59,7°C; 11 = 61,0°C; 12= 61,9°C; 13 = 62,5°C. É notável, que os números 7 e 8 obtiveram bandas mais reluzentes, concluindo que a temperatura de melhor annealing seria entre 54°C a 56°C, isto é, 55°C foi a adotada.

Fonte: Elaborada pela autora

No Quadro 2 encontram-se as sequências dos *primers* utilizados, bem como os perfis de ciclagem, já estabelecidos através do PCR-gradiente.

Quadro 2: Sequência dos *primers* da região ITS e da região D1e D2 do rDNA e do gene Cox II do mtDNA empregados para as análises moleculares.

Sequencia (5' – 3')	região	Perfil de ciclagem
ITS 4 – TCCTCCGCTTATTGATATGC	пе	1X 94°C/5min; 35X 94°C/1min, 55°C/2min,
ITS 5 - GGAAGTAAAAGTCGTAACAAGG	115	72°C/2min; 1X 72°C/10 min
FM 58 - CCACAAATTTCACTACATTGA	Covil	1X 94°C/5min; 35X 94°C/1min,
FM 66 – TAGGATTTCAAGATCCTGC		55°C/1,5min, 72°C/1,5min; 1X 72°C/10 min
NL1 -GCATATCAATAAGCGGAGGAAAAG		1X 94°C/5min; 35X 94°C/1min,
NL4 – GGTCCGTGTTTCAAGACGG	01/02	60°C/1,5min, 72°C/1,5min; 1X 72°C/10 min

Fonte: Elaborado pela autora

3.5 VISUALIZAÇÃO DO *AMPLICON* POR ELETROFORESE EM GEL DE AGAROSE

A visualização do material amplificado foi realizada a partir de eletroforese em gel de agarose 2,0% empregando-se marcador de peso molecular de 100 pares de base (Promega), bem como o agente intercalente de DNA descrito acima.

3.5.1 ITS

A Figura 6 ilustra os *amplicons* originados da PCR da região ITS, dos primeiros isolados de *P. insidiosum*.

Figura 6: Região ITS amplificada, com o tamanho do fragmento de aproximadamente 955pb. 1= DNA 100 pb Ladder® (Fermentas); 2- Eq-02; 3=Eq-03; 4= Eq- 04; 5= Eq-05; 6=Eq-06; 7= NO; 8=NO.

Fonte: Elaborada pela autora

A partir dessa imagem conclui-se, que o PCR realmente foi eficaz e a temperatura de *annealing* de 55°C seria a recomendada para seguir com o sequenciamento. Observa-se a presença de bandas únicas, porém com um pouco de arraste (*smears*).

Nos seguintes isolados, o protocolo de extração do material genético e o perfil de ciclagem foram os mesmos que os primeiros. Entretanto, na fotografia do gel, não surgiram bandas, e foi notado muito arraste (*smears*). Por consequente, as amostras de DNA sofreram diluições com água MiliQ autoclavada, contendo 100ηg/µL como concentração final.

Concentrações elevadas de DNA poderiam interferir no rendimento da reação de PCR, pois após a diluição apareceram bandas como ilustram nas Figuras 7 e 8 onde mostram bandas únicas que só apareceram depois da concentração de DNA ser diluída.

Figura 7: Região ITS amplificada, com o tamanho do fragmento de aproximadamente 955pb. DNA diluído pra a concentração de 100ng/µL 1- DNA 100 pb Ladder® (Fermentas); 2- Eq-07; 3=Eq-08; 4= Eq- 09; 5= Eq-10; 6=Eq-11; 7= 12; 8=NO; 9= Controle (Eq-08); 10=Controle(Eq-05); 11= Controle (Levedura).

Fonte: Elaborada pela autora

Figura 8: Região ITS amplificada, com o tamanho do fragmento de aproximadamente 955pb. DNA diluído pra a concentração de 100ng/µL 1- DNA 100 pb Ladder® (Fermentas); 2-B-01; 3=Eq-13; 4= Eq-15; 5= Eq-16; 6=Eq-20; 7= Eq-21; 8=Eq-22; 9=Eq-24; 10- Cão; 11- No; 12-Eq-15 sem estar diluído; 13=Eq-20 sem estar diluído; 14= Cão sem estar diluído;15=Controle (Levedura),16= Controle(Eq-05, diluída). Observando-se um arraste nas amostras que não foram diluídas.

Fonte: Elaborada pela autora

3.5.2 COX-II

Essa região foi muito difícil de ser amplificada, pois como se trata de DNA mitocondrial, este está em menor concentração quando comparado ao DNA genômico (ITS e D1-D2).

Para que, a região mitocondrial fosse amplificada, a quantidade de *primers* posta no mix do PCR, teve que ser dobrada, visto que, depois desse ato, as amplificações foram sucedidas, como pode ser observado na Figura 9.

Figura 9: Amplificação região do COX-II dos isolados de *P.insidiosum*, observando o tamanho de aproximadamente 609pb. A) 1=B-01; 2:Eq-02; 3-Eq-03; 4=Eq-04, 5=Eq-05, 6= Eq-06; 7= Marcador molecular de 1kb; 8=Eq-07; 9=Eq-08; 10=Eq-09 e 11=Eq-10; 12=NO ; 6=Marcador molecular de 1kb.
B) 1=Eq-11; 2:Eq-12; 3-Eq-13; 4=Eq-15, 5=Eq-16, 6=Eq-20; 7 =Marcador molecular de 1kb; 8=Eq-21; 9=Eq-22; 10=Eq-24 e 11=Cão; 12-NO; 13= Marcador molecular de 1kb.

Fonte: Elaborada pela autora

3.5.3 D1-D2

A região D1 e D2 pertencem a região 28S do DNA ribossomal do *P. insidiosum* e 26S dos microrganismos pertencentes ao gênero *Candida,* foi amplificada, de acordo com os perfis de ciclagem determinado pelo gradiente; purificada e sequenciada e sendo os isolados agrupados de acordo com a árvore filogenética escolhida e adequada.

Entretanto, primeiramente necessitou fazer um PCR dessa região e a sua verificação e visualização de produto amplificado na eletroforese. A Figura 10 mostra a visualização desse fragmento amplificado, confirmando que o isolado apresenta esta região e esta pode ser amplificada e sequenciada.

Figura 10: Amplificação da região D1 e D2. O fragmento possui cerca de 786pb. 1=B01; 2- Eq-02; 3=Eq-03; 4= Eq- 04; 5= Eq-05; 6=Eq-06; 7=Eq-07; 8=Eq-08; 9=Eq-09; Eq-10; 11=NO; 12= Controle (Leveduras);13- DNA 1kb Ladder®.

Fonte: Elaborada pela autora

3.6 PREPARO DOS AMPLICONS PARA A REAÇÃO DE SEQUENCIAMENTO

O kit Illustra GFX PCR DNA and Gel Band Purification Kit (GE) foi utilizado a fim de purificar apenas uma banda resultante do PCR, sendo esta, cortada e retirada do gel para seguir com a etapa de purificação.

A Figura 11 mostra o resultado da purificação dos *amplicons* da região ITS, já a Figura 12 da COX e Figura 13 da D1-D2.

- Figura 11: Purificação dos fragmentos da região ITS dos isolados de *P.insidiosum*, observando o tamanho de aproximadamente 955pb.
- 1=B-01; 2:Eq-02; 3-Eq-03; 4=Eq-04, 5=Eq-05, 6= DNA Low Mass ladder® (4μL; Invitrogen); 7=Eq-06; 8=Eq-07; 9=Eq-08; 10=Eq-09 e 11=Eq-10; 12= DNA 1kb Ladder.
- 2) 1=Eq-11; 2:Eq-12; 3-Eq-13; 4=Eq-15, 5=Eq-16, 6= DNA Low Mass ladder® (4µL; Invitrogen); 7=Eq-20; 8=Eq-21; 9=Eq-22; 10=Eq-24 e 11=Cão.; 12= DNA 1kb Ladder.

Fonte: Elaborada pela autora

As concentrações dessas amostras permaneceram próximas de 20ηg/µL, podendo posteriormente ser sequenciadas.

- Figura 12 Purificação dos fragmentos da região do COX-II dos isolados de *P.insidiosum*, observando o tamanho de aproximadamente 609pb. Bandas com pouca intensidade.
- 1=B-01; 2:Eq-02; 3-Eq-03; 4=Eq-04, 5=Eq-05, 6= DNA Low Mass ladder® (4µL; Invitrogen); 7=Eq-06; 8=Eq-07; 9=Eq-08; 10=Eq-09 e 11=Eq-10.
- 2) 1=Eq-11; 2:Eq-12; 3-Eq-13; 4=Eq-15, 5=Eq-16, 6= DNA Low Mass ladder® (4µL; Invitrogen); 7=Eq-20; 8=Eq-21; 9=Eq-22; 10=Eq-24 e 11=Cão.

Fonte: Elaborada pela autora

Observa-se, através do marcador de peso molecular que as concentrações encontram-se na faixa de 10ηg/µL ou menor, que em teoria não estaria adequada para o sequenciamento. Ao enviar-se essas amostras para o sequenciamento, a técnica responsável, no momento de processar essas amostras do Cox-II, aumentou
o tempo de injeção das amostras no aparelho, o que ajudou bastante no resultado do sequenciamento.

Figura 13: Purificação dos fragmentos da região D1 e D2 dos isolados de *P.insidiosum*, observando o tamanho de aproximadamente 786pb.
1) 1=B-01; 2:Eq-02; 3-Eq-03; 4=Eq-04, 5=Eq-05, 6= DNA Low Mass ladder® (4μL;

Invitrogen); 7=Eq-06; 8=Eq-07; 9=Eq-08; 10=Eq-09 e 11=Eq-10.

 2) 1=Eq-11; 2:Eq-12; 3-Eq-13; 4=Eq-15, 5=Eq-16, 6= DNA Low Mass ladder® (4μL; Invitrogen); 7=Eq-20; 8=Eq-21; 9=Eq-22; 10=Eq-24 e 11=Cão.

Fonte: Elaborada pela autora

Já as concentrações dessas amostras permaneceram próximas de 30ηg/μL, podendo posteriormente ser seguenciadas.

3.7 SEQUENCIAMENTO DOS AMPLICONS

O sequenciamento dos *amplicons* foi terceirizado junto ao Laboratório de Diagnóstico Molecular do Depto. de Microbiologia e Imunologia-IBB/UNESP, segundo a plataforma do sequenciador ABI3500 (Applied Biosystems). As sequências sense e antisense obtidas foram visualizadas pelo programa Chromas 2.3, alinhadas pelo programa Mega 6.0 e então submetidas ao Blast (<u>http://www.ncbi.nlm.nih.gov/BLAST</u>) para confirmar a identidade molecular dos amplicons de *P. insidiosum* obtidos.

Nos Apêndices A, B e C podem ser observadas todas as sequencias de nucleotídeos obtidas no sequenciamento da região ITS, Cox-II e D1-D2, dos 20 isolados de *Pythium insidiosum*.

Ao se analisarem essas sequencias no GenBank (<u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>) obteve-se altas porcentagens de identidade com isolados de *P. insidiosum*, como pode ser observado na Tabela 2.

	isolado de maior identidade molecular e número de acesso no GenBanl						
		ITS	Co	ox-II	D1	D1-D2	
Isolados	% identidad e	n° acesso	% identidade	n° acesso	% identidade	n° acesso	
B01	99%	JQ305801.1	99%	AF196597.1	100%	JQ305800.1	
Eq-2	99%	AY151168.1	99%	AF196597.1	100%	JQ305800.1	
Eq-3	99%	JN126298.1	99%	AF196597.1	99%	JQ305800.1	
Eq-4	97%	JN126290.1	99%	AF196597.1	99%	JQ305800.1	
Eq-5	79%	GQ2601231	99%	AF196597.1	99%	JQ305800.1	
Eq-6	92%	AY151165.1	99%	AF196597.1	100%	JQ305800.1	
Eq-7	99%	AY151166.1	99%	AF196597.1	100%	JQ305800.1	
Eq-8	99%	JN126307.1	99%	AF196597.1	100%	JQ305800.1	
Eq-9	99%	JQ305801.1	99%	AF196597.1	100%	JQ305800.1	
Eq-10	99%	AY151168.1	99%	AF196597.1	100%	JQ305800.1	
Eq-11	89%	AY151158.1	99%	AF196597.1	100%	JQ305800.1	
Eq-12	93%	AY151157.1	99%	AF196597.1	100%	JQ305800.1	
Eq-13	99%	AY151166.1	99%	AF196597.1	99%	JQ305800.1	
Eq-15	99%	AY151157.1	99%	AF196597.1	99%	JQ305800.1	
Eq-16	99%	AY151157.1	99%	AF196597.1	100%	JQ305800.1	
Eq-20	99%	AY598637.1	99%	AF196597.1	99%	JQ305800.1	
Eq-21	99%	AY598637.1	99%	AF196597.1	100%	JQ305800.1	
Eq-22	95%	HQ6435701	99%	AF196597.1	99%	JQ305800.1	
Eq-24	97%	JN126307.1	99%	AF196597.1	100%	JQ305800.1	
Cão	97%	HQ6435701	99%	AF196597.1	99%	JQ305800.1	

Tabela 2: Identidade molecular das sequências de ITS, Cox-II e D1-D2 dos isolados.

Elaborada pela autora

3.8 ANÁLISES FILOGENÉTICAS

As análises filogenéticas foram realizadas no programa Mega 6.0, após o alinhamento das sequencias pelo Clustal W.

Sequências de DNA do gene da região codificadora da citocromo oxidase II e ITS de outras espécies de fungos foram obtidas a partir da base de dados do Genbank (<u>http://www.ncbi.nlm.nih.gov/BLAST</u>) e foram usadas como grupo externo (*outgroup*) para análises filogenéticas por Neighbor Joining.

4 RESULTADOS E DISCUSSÃO

4.1 ANÁLISES FILOGENÉTICAS

Na análise filogenética da região ITS observa-se baixos *bootstraps* separando os nossos isolados dos isolados do Tailândia, corroborando com AZEVEDO et al. (2012). A região ITS não representa ser um bom marcador, pois não houve a separação com consistência dos *bootstraps*. Houve apenas um forte bootstrap separando os isolados de *P. insidiosum* do grupo externo (*outgroup*). A Figura 14 ilustra a árvore filogenética dos nossos isolados em comparação aos isolados de *P. insidiosum* do grupo externo (*outgroup*). A Figura 14 ilustra a árvore filogenética dos nossos isolados em comparação aos isolados de *P. insidiosum* do grupo externo (*outgroup*). A Figura 14 ilustra a árvore filogenética dos nossos isolados em comparação aos isolados de *P. insidiosum* da região Sul e Centro-Oeste do Brasil. (AZEVEDO et al., 2012). Nessa análise foram também incluídos os isolados trabalhados por AZEVEDO et al. (2012).

SCHURCKO et al. (2003) realizaram analises filogenéticas de isolados de *P. insidiosum*, baseadas na região intergênica IGS do DNA ribossomal, provenientes de várias regiões geográficas e observaram a separação em clados distintos de isolados provenientes do Continente Americano e isolados provenientes da Tailândia, embora deste último foi empregado um baixo número de isolados. BOSCO et al. (2008) ao realizarem a comparação de sequencias da região ITS de dois isolados de *P. insidiosum* do Estado de São Paulo (um deles aqui novamente avaliado, o isolado B-01) observaram que esses isolados se agruparam em um mesmo clado que os isolados previamente avaliados por SCHURCKO et a. (2003), corroborando dessa forma para esses achados que os isolados do Continente Americano diferem dos Tailandeses.

A análise filogenética do CoxII permitiu a clara separação dos nossos isolados em comparação aos isolados de *P. insidiosum* da Tailândia. Os isolados da América do Sul de diferentes hospedeiros, como equinos, cão e humano, não são geneticamente distintos, ou seja, não tem associação com hospedeiro específico. As fontes ambientais são comuns para diferentes os hospedeiros. Os genótipos de *P. insidiosum* provenientes do Brasil, aqui representados pelas regiões sudeste, sul e centro-oeste, e ainda os isolados da América Central (Costa Rica) e América do Norte (Texas, USA) são relativamente homogêneos, ou seja, agrupam-se em um *cluster* próprio nitidamente separado dos isolados tailandeses, que por sua vez, aparentam ter uma maior diversidade genética.

Os genótipos americanos podem ter sido originados da região da Ásia, provavelmente Tailândia, uma vez que observou-se dois genótipos de *P. insidiosum* da Tailândia agrupados no *cluster* dos isolados americanos, sugerindo um provável efeito fundador.

Para confirmar nossas hipóteses ainda são necessários mais estudos, como a rrealização de análise de rede de haplótipos, *molecular clock*, além de testes de biogeografia.

Figura 14: Análise filogenética da região ITS realizada pelo método de Neighbor-Joining com *bootstrap* de 1000 replicações (Saitou & Nei, 1987). A distância evolucionária foi computada pelo método Kimura 2parâmetros (Kimura, 1980) a partir do alinhamento de 79 sequências de nucleotídeos. As análises foram realizadas no MEGA6 (Tamura et al., 2013).

Figura 15: Análise filogenética da região Cox-II realizada pelo método de Neighbor-Joining com *bootstrap* de 1000 replicações (Saitou & Nei, 1987). A distância evolucionária foi computada pelo método Tamura 3-parâmetros (Tamura, 1992) a partir do alinhamento de 83 sequências de nucleotídeos. As análises foram realizadas no MEGA6 (Tamura et al., 2013).

Em relação à análise filogenética da região D1-D2, não existe depósito dessa região em particular nas bases de dados do GenBank. Como observado na Tabela 3, a região D1-D2 foi a que mostrou a maior porcentagem de identidade, chegando a 100% em 12 isolados e 99% em 8 isolados. Como é observado para as leveduras do gênero *Candida*, essa região muitas vezes é a de escolha para a identificação molecular. (BRIARD et al., 1995; ECHEVERRIGARAY et al., 2013; HAYASHI et al., 2013; SATOH, et al., 2013). A análise de um maior número de isolados, incluindo isolados provenientes da Tailândia, é necessária para se inferir se a região D1-D2 é a melhor para a identificação molecular de *P. insidiosum*. As Figura 16 A e B ilustram as árvores filogenéticas baseadas na região D1-D2 da subunidade 28S do DNA ribossomal, sendo a Figura 16 A árvore original e a Figura 16 B a árvore de acordo com o agrupamento entre os nossos isolados. Para essas análises foram empregados como grupo externo (*outgroup*) cepas de *Candida albicans* depositadas no GenBank.

Figura 16:A-) Análise filogenética da região D1-D2 do DNA *ribossomal* realizada pelo método de Neighbor-Joining com *bootstrap* de 1000 replicações (Saitou & Nei, 1987). A distância evolucionária foi computada pelo método Jukes-Cantor (Jukes & Cantor, 1969) a partir do alinhamento de 22 sequências de nucleotídeos. As análises foram realizadas no MEGA6 (Tamura et al., 2013).

Fonte: Elaborada pela autora

Figura 16:B-) Análise filogenética da região D1-D2 do DNA ribossomal realizada pelo método de Neighbor-Joining com *bootstra*p de 1000 replicações (Saitou & Nei, 1987). A distância evolucionária foi computada pelo método Jukes-Cantor (Jukes & Cantor, 1969) a partir do alinhamento de 22 sequências de nucleotídeos. As análises foram realizadas no MEGA6 (Tamura et al., 2013).

Fonte: Elaborada pela autora

Quadro 3: Lista de isolados de *Pythium insid*iosum empregados para as análises filogenéticas da região ITS.

Espécie	Isolado	Fonte	Origem	referência	n° acesso Genbank
P. insidiosum	B-01	Humano	Paraguaçú Paulista/SP – Brasil	presente trabalho	KP842832
P. insidiosum	Eq-2	Equino	Jaú/SP – Brasil	presente trabalho	KP842833
P. insidiosum	Eq-3	Equino	Barra Bonita/SP – Brasil	presente trabalho	KP842834
P. insidiosum	Eq-4	Equino	Itápolis/SP- Brasil	presente trabalho	KP842835
P. insidiosum	Eq-5	Equino	Porto Feliz/SP – Brasil	presente trabalho	KP842836
P. insidiosum	Eq-6	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842837
P. insidiosum	Eq-7	Equino	Anhembi/SP - Brasil	presente trabalho	KP842838
P. insidiosum	Eq-8	Equino	Paranapanem a/SP – Brasil	presente trabalho	KP842839
P. insidiosum	Eq-9	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842840
P. insidiosum	Eq-10	Equino	Paranapanem a/SP – Brasil	presente trabalho	KP842841
P. insidiosum	Eq-11	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842842
P. insidiosum	Eq-12	Equino	Bofete/SP – Brasil	presente trabalho	KP842843
P. insidiosum	Eq-13	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842844
P. insidiosum	Eq-15	Equino	Igaraçú do Tietê/SP – Brasil	presente trabalho	KP842845
P. insidiosum	Eq-16	Equino	Pereiras/SP – Brasil	presente trabalho	KP842846
P. insidiosum	Eq-20	Equino	Jaú/SP – Brasil	presente trabalho	KP842847
P. insidiosum	Eq-21	Equino	Laranjal Paulista/SP – Brasil	presente trabalho	KP842848
P. insidiosum	Eq-22	Equino	Araçatuba/SP - Brasil	presente trabalho	KP842849
P. insidiosum	Eq-24	Equino	São Pedro/SP – Brasil	presente trabalho	KP842850
P. insidiosum	Cão	Canino	Boituva/SP – Brasil	presente trabalho	KP842851
P. insidiosum	Lapemi 051	Ambiente	Região Sul – Brasil	Azevedo et al., 2012	JN126309
P. insidiosum	Lapemi 118	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126280

P. insidiosum	Lapemi 119	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126281
P. insidiosum	Lapemi 121	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126282
P. insidiosum	Lapemi 123	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126283
P. insidiosum	Lapemi 124	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126284
P. insidiosum	Lapemi 125	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126285
P. insidiosum	Lapemi 126	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126286
P. insidiosum	Lapemi 136	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126288
P. insidiosum	Lapemi 138	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126289
P. insidiosum	Lapemi 143	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126290
P. insidiosum	Lapemi 148	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126292
P. insidiosum	Lapemi 156	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126293
P. insidiosum	Lapemi 175	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126294
P. insidiosum	Lapemi 178	Equino	Região Centro-oeste - Brasil	Azevedo et al., 2012	JN126295
P. insidiosum	Lapemi 187	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126296
P. insidiosum	Lapemi 205	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126297
P. insidiosum	Lapemi 210	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126298
P. insidiosum	Lapemi 223	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126300
P. insidiosum	Lapemi 232	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126302
P. insidiosum	Lapemi 245	Equino	Região Sudeste – Brasil	Azevedo et al., 2012	JN126303
P. insidiosum	Lapemi 247	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126304
P. insidiosum	Lapemi 258	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126305

P. insidiosum	Lapemi 259	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126306
P. insidiosum	Lapemi 260	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126307
P. insidiosum	Lapemi 261	Equino	Região Sul – Brasil	Azevedo et al., 2012	JN126308
P. insidiosum	MTPI04	Equino	Texas - EUA	Schurcko et al., 2003	GQ475490
P. insidiosum	CR02	Ambiente	Tailândia	Supabandhu et al., 2008	EF016903
P. insidiosum	CR05	Ambiente	Tailândia	Supabandhu et al., 2008	EF016906
P. insidiosum	CR08	Ambiente	Tailândia	Supabandhu et al., 2008	EF016909
P. insidiosum	CR10	Ambiente	Tailândia	Supabandhu et al., 2008	EF016911
P. insidiosum	PC3	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260122
P. insidiosum	PC5	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260120
P. insidiosum	PC6	Humano	Tailândia	Kammarnjesadakul et al., 2011	FJ917389
P. insidiosum	PC7	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260124
P. insidiosum	PC10	Humano	Tailândia	Kammarnjesadakul et al., 2011	FJ917395
P. insidiosum	PCM1	Humano	Tailândia	Kammarnjesadakul et al., 2011	FJ917393
P. insidiosum	PCM2	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260121
P. insidiosum	PEC1	Ambiente	Tailândia	Kammarnjesadakul et al., 2011	FJ917392
P. insidiosum	PMR2	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260118
P. insidiosum	PMR3	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260119
P. insidiosum	PMS1	Humano	Tailândia	Kammarnjesadakul et al., 2011	GQ260123
P. insidiosum	LP02	Ambiente	Tailândia	Supabandhu et al., 2008	EF016885
P. insidiosum	LP05	Ambiente	Tailândia	Supabandhu et al., 2008	EF016888
P. insidiosum	LP07	Ambiente	Tailândia	Supabandhu et al., 2008	EF016890
P. insidiosum	LP08	Ambiente	Tailândia	Supabandhu et al., 2008	EF016891
P. insidiosum	LPN04	Ambiente	Tailândia	Supabandhu et al., 2008	EF016867
P. insidiosum	LPN05	ambiente	Tailândia	Supabandhu et al., 2008	EF016868
P. insidiosum	LPN06	Ambiente	Tailândia	Supabandhu et al.,	EF016869

				2008	
P. insidiosum	LPN10	Ambiente	Tailândia	Supabandhu et al., 2008	EF016873
P. insidiosum	LPN11	Ambiente	Tailândia	Supabandhu et al., 2008	EF016874
P. insidiosum	LPN15	Ambiente	Tailândia	Supabandhu et al., 2008	EF016878
P. insidiosum	NAN01	Ambiente	Tailândia	Supabandhu et al., 2008	EF016896
P. insidiosum	NAN02	Ambiente	Tailândia	Supabandhu et al., 2008	EF016897
P. insidiosum	NAN03	Ambiente	Tailândia	Supabandhu et al., 2008	EF016898
P. catenulatum	ECU1	Ambiente	Tailândia		FJ917394
Ph. sojae	Fu-P12-1	Soja	Japão	Villa et al., 2006	AB217683
L. giganteun		Mosquito	Carolina do Norte - EUA	Schurcko et al., 2003	AY151183

P. catenulatum = Pythium catenulatum Ph. sojae = Phythopthora sojae L. giganteun = Lagenideum giganteum Fonte: Elaborado pela autora

Quadro 4: Lista de isolados de Pythium insidiosum empregados para as análises

filogenéticas da citocromo c oxidase (CoxII).

Espécie	isolado	Fonte	origem	referência	n°acesso
_					Genbank
P. insidiosum	B-01	Humano	Paraguaçú Paulista/SP -Brasil	presente trabalho	KP842872
P. insidiosum	Eq-2	Equino	Jaú/SP - Brasil	presente trabalho	KP842873
P. insidiosum	Eq-3	Equino	Barra Bonita/SP - Brasil	presente trabalho	KP842874
P. insidiosum	Eq-4	Equino	Itápolis/SP- Brasil	presente trabalho	KP842875
P. insidiosum	Eq-5	Equino	Porto Feliz/SP - Brasil	presente trabalho	KP842876
P. insidiosum	Eq-6	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842877
P. insidiosum	Eq-7	Equino	Anhembi/SP - Brasil	presente trabalho	KP842878
P. insidiosum	Eq-8	Equino	Paranapanema/SP - Brasil	presente trabalho	KP842879
P. insidiosum	Eq-9	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842880
P. insidiosum	Eq-10	Equino	Paranapanema/SP - Brasil	presente trabalho	KP842881
P. insidiosum	Eq-11	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842882
P. insidiosum	Eq-12	Equino	Bofete/SP - Brasil	presente trabalho	KP842883
P. insidiosum	Eq-13	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842884
P. insidiosum	Eq-15	Equino	Igaraçú do Tietê/SP - Brasil	presente trabalho	KP842885
P. insidiosum	Eq-16	Equino	Pereiras/SP - Brasil	presente trabalho	KP842886
P. insidiosum	Eq-20	Equino	Jaú/SP - Brasil	presente trabalho	KP842887
P. insidiosum	Eq-21	Equino	Laranjal Paulista/SP - Brasil	presente trabalho	KP842888
P. insidiosum	Eq-22	Equino	Araçatuba/SP - Brasil	presente trabalho	KP842889
P. insidiosum	Eq-24	Equino	São Pedro/SP - Brasil	presente trabalho	KP842890
P. insidiosum	Cão	Canino	Boituva/SP - Brasil	presente trabalho	KP842891
P. insidiosum	LAPMI1 18	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159478
P. insidiosum	LAPMI1 18	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159479
P. insidiosum	LAPMI1 21	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159477
P. insidiosum	LAPMI1 23	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159480
P. insidiosum	LAPMI1 24	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159481
P. insidiosum	LAPMI1 25	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159482
P. insidiosum	LAPMI1 29	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	N159484
P. insidiosum	LAPMI1 36	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159485
P. insidiosum	LAPMI1 38	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159486
P. insidiosum	LAPMI1 43	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159487
P. insidiosum	LAPM I146	Canino	Região Sul- Brasil	Azevedo, et al., 2012	JN159488

P. insidiosum	LAPMI1 48	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159489
P. insidiosum	LAPMI1 56	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159490
P. insidiosum	LAPMI1 75	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159491
P. insidiosum	LAPMI1 78	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159492
P. insidiosum	LAPMI1 87	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159493
P. insidiosum	LAPMI2 05	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159494
P. insidiosum	LAPMI2 10	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159495
P. insidiosum	LAMPI2 23	Equino	Região Sul- Brasil	Azevedo, et al., 2012	N159497
P. insidiosum	LAPMI2 27	Equino	Região Centro-Oeste- Brasil	Azevedo, et al., 2012	JN159498
P. insidiosum	LAPMI2 32	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159499
P. insidiosum	LAPMI2 45	Equino	Região Sudeste- Brasil	Azevedo, et al., 2012	JN159500
P. insidiosum	LAPMI2 47	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159501
P. insidiosum	LAPMI2 58	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159502
P. insidiosum	LAPMI2 59	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159503
P. insidiosum	LAPMI2 61	Equino	Região Sul- Brasil	Azevedo, et al., 2012	JN159505
P. insidiosum	LAPMI0 51	Água	Região Sul- Brasil	Azevedo, et al., 2012	JN159507
P. insidiosum	ATCC58 637	Equino	Costa Rica	Azevedo, et al., 2012	JN159506
P. insidiosum	MTPI04	Equino	Texas-USA	Kammarnjesadakul, et al., 2011	GQ45157 1
P. insidiosum	MTPI12	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45157 0
P. insidiosum	MTPI19	Equino	Costa Rica	Kammarnjesadakul, et al., 2011	GQ45156 9
P. insidiosum	PC2	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45156 9
P. insidiosum	PC3	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45157 3
P. insidiosum	PC5	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45159 0
P. insidiosum	PC6	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45157 4
P. insidiosum	PC7	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45158 8
P. insidiosum	PC10	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45157 5
P. insidiosum	PCM1	Humano	Tailândia	Kammarnjesadakul, et al., 2011	GQ45158 7

P. insidiosumPEC1AmbientTailândiaKarmarrjesadakul, eGQ45157 e tal., 2011fP. insidiosumPECM3AmbientTailândiaKarmarrjesadakul, eGQ45157 e tal., 2011GQ45157P. insidiosumPECM5AmbientTailândiaKarmarrjesadakul, eGQ45157 e tal., 2011GQ45157P. insidiosumPECM6AmbientTailândiaKarmarrjesadakul, eGQ45157 e tal., 2011GQ45157P. insidiosumPECM6AmbientTailândiaKarmarrjesadakul, eGQ45158 e tal., 2011GQ45158P. insidiosumPECM8AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45160 e tal., 2011GQ45160 e tal., 2011P. insidiosumPECM9AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45160 e tal., 2011GQ45158P. insidiosumPECM10AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45159 e tal., 2011GQ45159P. insidiosumPECM12AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45159 e tal., 2011GQ45159P. insidiosumPECM13AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKarmarrjesadakul, e tal., 2011GQ4	P. insidiosum	PCM2	Humano	Tailândia	Kammarniesadakul.	GQ45159
P. insidiosum PEC1 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45157 et al., 2011 P. insidiosum PECM3 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45157 P. insidiosum PECM5 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45157 P. insidiosum PECM6 Ambient Tailândia Kammarnjesadakul, e GQ45158 P. insidiosum PECM7 Ambient Tailândia Kammarnjesadakul, e GQ45158 P. insidiosum PECM8 Ambient Tailândia Kammarnjesadakul, GQ45160 GQ45160 P. insidiosum PECM9 Ambient Tailândia Kammarnjesadakul, GQ45160 GQ45160 P. insidiosum PECM10 Ambient Tailândia Kammarnjesadakul, GQ45158 GQ45158 P. insidiosum PECM12 Ambient Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM12 Ambient Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM14 Ambient Tailândia Kammarnjesadakul, GQ45159 GQ45159 <td< td=""><td></td><td>1 01112</td><td>- I di li di li di</td><td></td><td>et al., 2011</td><td>1</td></td<>		1 01112	- I di li di li di		et al., 2011	1
PrinsidiosumPECM3Ambient eTailândiaet al., 20116P. insidiosumPECM5AmbientTailândiaKarmarnjesadakul, eGQ45157P. insidiosumPECM6AmbientTailândiaKarmarnjesadakul, eGQ45157P. insidiosumPECM6AmbientTailândiaKarmarnjesadakul, eGQ45157P. insidiosumPECM6AmbientTailândiaKarmarnjesadakul, eGQ45158P. insidiosumPECM8AmbientTailândiaKarmarnjesadakul, eGQ45160P. insidiosumPECM8AmbientTailândiaKarmarnjesadakul, eGQ45160P. insidiosumPECM9AmbientTailândiaKarmarnjesadakul, eGQ45160P. insidiosumPECM10AmbientTailândiaKarmarnjesadakul, eGQ45159P. insidiosumPECM12AmbientTailândiaKarmarnjesadakul, eGQ45159P. insidiosumPECM12AmbientTailândiaKarmarnjesadakul, eGQ45159P. insidiosumPECM12AmbientTailândiaKarmarnjesadakul, eGQ45159P. insidiosumPECM15AmbientTailândiaKarmarnjesadakul, eGQ45159P. insidiosumPECM15AmbientTailândiaKarmarnjesadakul, GQ45159GQ45159P. insidiosumPECM16AmbientTailândiaKarmarnjesadakul, GQ45159GQ45159P. insidiosumPECM16AmbientTailândiaKarmarnjesadakul, GQ45159GQ45159 </td <td>P insidiosum</td> <td>PEC1</td> <td>Ambient</td> <td>Tailândia</td> <td>Kammarniesadakul.</td> <td>GQ45157</td>	P insidiosum	PEC1	Ambient	Tailândia	Kammarniesadakul.	GQ45157
P. insidiosum PECM3 Ambient e Tailândia Kammarnjesadakul, e GQ45157 et al., 2011 P. insidiosum PECM5 Ambient e Tailândia Kammarnjesadakul, e GQ45157 et al., 2011 8 P. insidiosum PECM6 Ambient e Tailândia Kammarnjesadakul, e GQ45157 et al., 2011 GQ45157 et al., 2011 P. insidiosum PECM7 Ambient e Tailândia Kammarnjesadakul, e GQ45158 et al., 2011 GQ45160 P. insidiosum PECM8 Ambient e Tailândia Kammarnjesadakul, e GQ45160 P. insidiosum PECM1 Ambient e Tailândia Kammarnjesadakul, e GQ45158 P. insidiosum PECM11 Ambient e Tailândia Kammarnjesadakul, e GQ45159 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM15 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM15 Ambient e Tailândia			e		et al., 2011	6
eet al., 20117P. insidiosumPECM5AmbientTailândiaKammarnjesadakul,GQ45157eital., 20119et al., 20119P. insidiosumPECM6AmbientTailândiaKammarnjesadakul,GQ45157eital., 20119et al., 201100P. insidiosumPECM7AmbientTailândiaKammarnjesadakul,GQ45158eital., 201110000P. insidiosumPECM9AmbientTailândiaKammarnjesadakul,GQ45160eital., 20111110P. insidiosumPECM10AmbientTailândiaKammarnjesadakul,GQ45160eital., 201130000P. insidiosumPECM10AmbientTailândiaKammarnjesadakul,GQ45159eital., 201120000P. insidiosumPECM12AmbientTailândiaKammarnjesadakul,GQ45159eital., 201144044P. insidiosumPECM13AmbientTailândiaKammarnjesadakul,GQ45159eital., 201144444P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ45159eital., 201117744P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ4515	P. insidiosum	PECM3	Ambient	Tailândia	Kammarnjesadakul,	GQ45157
P. insidiosum PECM5 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45157 8 P. insidiosum PECM6 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45158 0G45158 P. insidiosum PECM7 Ambient e Tailândia Kammarnjesadakul, e GQ45158 et al., 2011 GQ45158 P. insidiosum PECM8 Ambient e Tailândia Kammarnjesadakul, e GQ45160 P. insidiosum PECM1 Ambient e Tailândia Kammarnjesadakul, e GQ45160 P. insidiosum PECM10 Ambient e Tailândia Kammarnjesadakul, e GQ45160 P. insidiosum PECM11 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM14 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM14 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM16 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ4515			е		et al., 2011	7
eet al., 20118P. insidiosumPECM6AmbientTailândiaKammarnjesadakul,GQ45157erailândiaKammarnjesadakul,GQ45157GQ45158eeTailândiaKammarnjesadakul,GQ45158enbientTailândiaKammarnjesadakul,GQ45158eeTailândiaKammarnjesadakul,GQ45160eeTailândiaKammarnjesadakul,GQ45160eeTailândiaKammarnjesadakul,GQ45158P. insidiosumPECM10AmbientTailândiaKammarnjesadakul,GQ45160eeTailândiaKammarnjesadakul,GQ45158P. insidiosumPECM12AmbientTailândiaKammarnjesadakul,GQ45159etailândiaKammarnjesadakul,GQ45159GQ45159eetailândiaKammarnjesadakul,GQ45159enbientTailândiaKammarnjesadakul,GQ45159etailândiaKammarnjesadakul,GQ45159etail, 20117Fp. insidiosumPECM15AmbientTailândiaKammarnjesadakul,GQ45159etail, 201186420118P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ45150etail, 2011186666P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ45150et	P. insidiosum	PECM5	Ambient	Tailândia	Kammarnjesadakul,	GQ45157
P. insidiosum PECM6 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45157 9 P. insidiosum PECM7 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45158 0(245158) P. insidiosum PECM8 Ambient e Tailândia Kammarnjesadakul, e GQ45160 et al., 2011 GQ45160 2 P. insidiosum PECM9 Ambient e Tailândia Kammarnjesadakul, e GQ45160 et al., 2011 GQ45160 2 P. insidiosum PECM1 Ambient e Tailândia Kammarnjesadakul, e GQ45160 et al., 2011 GQ45159 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, e GQ45159 et al., 2011 GQ45159 P. insidiosum PECM13 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM14 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM15 Ambient e Tailândia Kammarnjesadakul, GQ45159 GQ45159 P. insidiosum PECM16 Ambient e Tailândia Kammarnjesadakul, GQ45150 GQ45150 P. insidiosum PECM1			е		et al., 2011	8
P. insidiosumPECM7Ambient eTailândiaKammarnjesadakul, GQ45158 et al., 2011QQ45158 Q45158 et al., 2011P. insidiosumPECM8Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45158 qt al., 2011P. insidiosumPECM9Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 qt al., 2011P. insidiosumPECM10Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45158 qt al., 2011P. insidiosumPECM11Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 qt al., 2011P. insidiosumPECM12Ambient eTailândiaKammarnjesadakul, eGQ45159 qt al., 2011GQ45159P. insidiosumPECM13Ambient eTailândiaKammarnjesadakul, gQ45159 et al., 2011GQ45159 qt al., 2011GQ45159P. insidiosumPECM14Ambient eTailândiaKammarnjesadakul, gQ45159 et al., 2011GQ45159 qt al., 2011GQ45159P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, GQ45159 et al., 2011GQ45159 qt al., 2011GQ45159P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, GQ45159 et al., 2011GQ45150 qt al., 2011P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, GQ45159 et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, GQ45159 et al., 2011	P. insidiosum	PECM6	Ambient	Tailândia	Kammarnjesadakul,	GQ45157
P. insidiosum PECM7 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45158 0 P. insidiosum PECM8 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45158 (GQ45158) P. insidiosum PECM9 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45160 (GQ45160) P. insidiosum PECM10 Ambient e Tailândia Kammarnjesadakul, e GQ45158 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, e GQ45159 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, e GQ45159 P. insidiosum PECM13 Ambient e Tailândia Kammarnjesadakul, e GQ45159 e e et al., 2011 7 7 P. insidiosum PECM14 Ambient Tailândia Kammarnjesadakul, GQ45159 GQ45159 e e et al., 2011 7 7 7 P. insidiosum PECM16 Ambient Tailândia Kammarnjesadakul, GQ45159 GQ45159 e et al., 2011 0 7 7 7			е		et al., 2011	9
eetal., 20110P. insidiosumPECM8AmbientTailândiaKammarnjesadakul,GQ45158eatal., 2011111P. insidiosumPECM9AmbientTailândiaKammarnjesadakul,GQ45160eatal., 201122P. insidiosumPECM10AmbientTailândiaKammarnjesadakul,GQ45160eeatal., 201133P. insidiosumPECM11AmbientTailândiaKammarnjesadakul,GQ45158eeatal., 2011624P. insidiosumPECM12AmbientTailândiaKammarnjesadakul,GQ45159eeatal., 20116666P. insidiosumPECM13AmbientTailândiaKammarnjesadakul,GQ45159eeatal., 20117766P. insidiosumPECM15AmbientTailândiaKammarnjesadakul,GQ45159eeatal., 20117866P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ45160eeatal., 201199611P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ45160eatal., 2011066111P. insidiosumPECM18AmbientTailândiaKammarnjesadakul,GQ45160eatal., 2011<	P. insidiosum	PECM7	Ambient	Tailândia	Kammarnjesadakul,	GQ45158
P. insidiosum PECM8 Ambient Tailândia Kammarnjesadakul, et al., 2011 GQ45158 P. insidiosum PECM9 Ambient Tailândia Kammarnjesadakul, et al., 2011 GQ45160 P. insidiosum PECM10 Ambient Tailândia Kammarnjesadakul, et al., 2011 GQ45158 P. insidiosum PECM11 Ambient Tailândia Kammarnjesadakul, et al., 2011 GQ45158 P. insidiosum PECM12 Ambient Tailândia Kammarnjesadakul, et al., 2011 GQ45159 P. insidiosum PECM13 Ambient Tailândia Kammarnjesadakul, et al., 2011 GQ45159 P. insidiosum PECM14 Ambient Tailândia Kammarnjesadakul, gQ45159 GQ45159 e e tailândia Kammarnjesadakul, gQ45159 GQ45159 e e tailândia Kammarnjesadakul, gQ45159 GQ45159 p. insidiosum PECM15 Ambient Tailândia Kammarnjesadakul, gQ45159 GQ45160 e 1 Tailândia Kammarnjesadakul, gQ45160 GQ45160 et al., 2011 9 P. insidiosum PECM17 Ambient </td <td></td> <td></td> <td>е</td> <td></td> <td>et al., 2011</td> <td>0</td>			е		et al., 2011	0
P. insidiosumPECM9Ambient eTailândiaKammarnjesadakul, Kammarnjesadakul, GQ45160GQ45160P. insidiosumPECM10Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45160P. insidiosumPECM11Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45158P. insidiosumPECM12Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM12Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM13Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM14Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM15Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45160P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45158<	P. insidiosum	PECM8	Ambient	Tailândia	Kammarnjesadakul,	GQ45158
P. insidiosum PECM9 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45160 2 P. insidiosum PECM10 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45160 P. insidiosum PECM11 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45158 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45159 P. insidiosum PECM13 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45159 P. insidiosum PECM13 Ambient Tailândia Kammarnjesadakul, e GQ45159 P. insidiosum PECM15 Ambient Tailândia Kammarnjesadakul, e GQ45159 P. insidiosum PECM16 Ambient Tailândia Kammarnjesadakul, e GQ45160 P. insidiosum PECM16 Ambient Tailândia Kammarnjesadakul, e GQ45160 P. insidiosum PECM17 Ambient Tailândia Kammarnjesadakul, e GQ45160 Q45160 P. insidiosum PECM20 Ambient Tailândia Kammarnjesadakul, e GQ45160 Q45159 <td></td> <td></td> <td>е</td> <td></td> <td>et al., 2011</td> <td>1</td>			е		et al., 2011	1
eet al., 20112P. insidiosumPECM10AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM11AmbientTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPECM12AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM13AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM13AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45169P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3Human	P. insidiosum	PECM9	Ambient	Tailândia	Kammarnjesadakul,	GQ45160
P. insidiosum PECM10 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45160 al., 2011 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45158 et al., 2011 P. insidiosum PECM12 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45159 et al., 2011 P. insidiosum PECM13 Ambient e Tailândia Kammarnjesadakul, e GQ45159 et al., 2011 GQ45159 et al., 2011 P. insidiosum PECM14 Ambient e Tailândia Kammarnjesadakul, e GQ45159 et al., 2011 GQ45159 et al., 2011 P. insidiosum PECM15 Ambient e Tailândia Kammarnjesadakul, e GQ45159 et al., 2011 GQ45160 et al., 2011 P. insidiosum PECM17 Ambient e Tailândia Kammarnjesadakul, e GQ45160 et al., 2011 GQ45160 e P. insidiosum PECM22 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45159 e P. insidiosum PECM22 Ambient e Tailândia Kammarnjesadakul, et al., 2011 GQ45159 e P. insidiosum PECM22 Ambient e Tailândia Kammarnjesadakul, et al., 2011 </td <td></td> <td></td> <td>е</td> <td></td> <td>et al., 2011</td> <td>2</td>			е		et al., 2011	2
eet al., 20113P. insidiosumPECM11AmbientTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPECM12AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM13AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM17AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM20AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3Hu	P. insidiosum	PECM10	Ambient	Tailândia	Kammarnjesadakul,	GQ45160
P. insidiosumPECM11Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPECM12Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45159 eP. insidiosumPECM13Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45159 eP. insidiosumPECM14Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45159 eP. insidiosumPECM15Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45159 eP. insidiosumPECM15Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45159 eP. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45160 eP. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45160 eP. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45159 eP. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45158 eP. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, e dt al., 2011GQ45158 e dt al., 2011GQ45158 e dt al., 2011P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, e dt al., 2011GQ45158 e			е		et al., 2011	3
P. insidiosumPECM12Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 6P. insidiosumPECM13AmbientTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM14Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM14Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM16Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM16Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM17Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45160 eP. insidiosumPECM17Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45160 eP. insidiosumPECM20Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM20Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPECM22Ambient eTailândiaKarmarnjesadakul, e tal., 2011GQ45159 eP. insidiosumPMR2HumanoTailândiaKarmarnjesadakul, e tal., 2011GQ45158 e tal., 2011GQ45158 e tal., 2011P. insidiosumPMR3HumanoTailândiaKarmarnjesadakul, e tal., 2011GQ45158 e tal., 2011GQ45158 e tal., 2011GQ45158 	P. insidiosum	PECM11	Ambient	Tailândia	Kammarnjesadakul,	GQ45158
P. insidiosumPECM12Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM13AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM14AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM17AmbientTailândiaKammarnjesadakul, eGQ45160P. insidiosumPECM17AmbientTailândiaKammarnjesadakul, eGQ45160P. insidiosumPECM18AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM20AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, eGQ45159P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, eGQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, eGQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, eGQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, eGQ			е		et al., 2011	2
eet al., 20116P. insidiosumPECM13AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM14AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM17AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18AmbientTailândiaKammarnjesadakul, et al., 2011GQ45150P. insidiosumPECM20AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12- 1SojaJapãoDQ071416L. giganteumMosquitoCarolina do Norte - FLIASchur	P. insidiosum	PECM12	Ambient	Tailândia	Kammarnjesadakul,	GQ45159
P. insidiosumPECM13 eAmbient eTailândiaKammarnjesadakul, etal., 2011GQ45159 4P. insidiosumPECM14Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159 4P. insidiosumPECM15Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159 4P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159 4P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45160 9P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45160 9P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45150 9P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159 9P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45159 9P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, etal., 2011GQ45158 9P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, etal., 2011GQ45158 9P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, etal., 2011GQ45158 9P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, etal., 2011GQ45158 9Ph. sojaeFu-P12-SojaJapãoDQ07141 6L. gigant			е		et al., 2011	6
eet al., 20114P. insidiosumPECM14AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1Humano	P. insidiosum	PECM13	Ambient	Tailândia	Kammarnjesadakul,	GQ45159
P. insidiosumPECM14Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 7P. insidiosumPECM15AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011GQ45159 et al., 2011P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011GQ45159 et al., 2011P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 et al., 2011GQ45160 et al., 2011P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011GQ45158P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011GQ45158 et al., 2011GQ45158 et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011GQ45158 et al., 2011GQ45158 et al., 2011GQ45158Ph. sojaeFu-P12-SojaJapãoDQ07141 66L. giganteumM			е		et al., 2011	4
eet al., 20117P. insidiosumPECM15AmbientTailândiaKammarnjesadakul,GQ45159eeat al., 20118P. insidiosumPECM16AmbientTailândiaKammarnjesadakul,GQ45159eeeet al., 20119P. insidiosumPECM17AmbientTailândiaKammarnjesadakul,GQ45160eeeet al., 20110P. insidiosumPECM18AmbientTailândiaKammarnjesadakul,GQ45160eeet al., 201110P. insidiosumPECM20AmbientTailândiaKammarnjesadakul,GQ45159eeet al., 201115P. insidiosumPECM22AmbientTailândiaKammarnjesadakul,GQ45159eeet al., 201122P. insidiosumPMR2HumanoTailândiaKammarnjesadakul,GQ45158eeat al., 2011322P. insidiosumPMR3HumanoTailândiaKammarnjesadakul,GQ45158et al., 201142444P. insidiosumPMS1HumanoTailândiaKammarnjesadakul,GQ45158et al., 2011622646Ph. sojaeFu-P12-SojaJapãoDQ071416L. giganteumMosquitoCarolina do Norte -Schurcko, et al.,AF086697FIIA2013	P. insidiosum	PECM14	Ambient	Tailândia	Kammarnjesadakul,	GQ45159
P. insidiosumPECM15Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM16AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., AF086697			е		et al., 2011	7
eet al., 20118P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	P. insidiosum	PECM15	Ambient	Tailândia	Kammarnjesadakul,	GQ45159
P. insidiosumPECM16Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM17AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM18AmbientTailândiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM20AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM20AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22AmbientTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12- 1SojaJapãoDQ07141C. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697			е		et al., 2011	8
eet al., 20119P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 ot al., 2011P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 et al., 2011P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 et al., 2011P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2011Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FLIASchurcko, et al., 2013AF086697	P. insidiosum	PECM16	Ambient	Tailândia	Kammarnjesadakul,	GQ45159
P. insidiosumPECM17Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 0P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 1P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 5P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 5P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 2P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 3P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 4Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., AF086697			e	 11A 11	et al., 2011	9
eet al., 20110P. insidiosumPECM18Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45160 et al., 2011P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 5P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 2P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 2P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 et al., 2013GQ45158 et al., 2013GQ45158 et al., 2013GQ45158 e	P. insidiosum	PECM17	Ambient	lailândia	Kammarnjesadakul,	GQ45160
P. insidiosumPECM18Ambient eTailandiaKammarnjesadakul, et al., 2011GQ45160P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12-SojaJapãoDQ071411MosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	5	550140	e	- 11 A 11	et al., 2011	0
eet al., 20111P. insidiosumPECM20Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12-SojaJapãoDQ071411MosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	P. Insidiosum	PECM18	Ambient	lailandia	Kammarnjesadakul,	GQ45160
P. insidiosumPECM20Ambient eTailandiaKammarnjesadakul, et al., 2011GQ45159 5P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, et al., 2011GQ45159 2P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 2P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 4P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 6Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	D <i>i i i</i>	DEOMOO	e	T 114 II	et al., 2011	1
P. insidiosumPECM22Ambient eTailândiaKammarnjesadakul, e tal., 2011GQ45159 2P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, e tal., 2011GQ45158 3P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, e tal., 2011GQ45158 3P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, e tal., 2011GQ45158 4P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, e tal., 2011GQ45158 6P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, e tal., 2011GQ45158 6Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	P. Insidiosum	PECM20	Ambient	Tallandia	Kammarnjesadakul,	GQ45159
P. insidiosumPECM22Ambient eTailandiaKammarnjesadakul, et al., 2011GQ45159P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	D <i>i i i</i>		e	T = 114 -= -11 -	et al., 2011	5
eet al., 20112P. insidiosumPMR2HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	P. Insidiosum	PECM22	Ambient	Tallandia	Kammarnjesadakul,	GQ45159
P. InsidiosumPMR2HumanoTailandiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158Ph. sojaeFu-P12-SojaJapãoDQ071416L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., AF086697	D in sidia sum		e	Tailéadia	et al., 2011	2
P. insidiosumPMR3HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 4P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 6P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 6Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	P. Insiaiosum	PIVIRZ	Humano	Tallandia	Kammamjesadakul,	GQ45158
P. InsidiosumPINKSHumanoFailandiaKammanjesadakui, et al., 2011GQ45158 4P. insidiosumPMS1HumanoTailândiaKammarnjesadakui, et al., 2011GQ45158 6Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	Dinaidiaaum		Humana	Toilôndio	Kommarniasadakul	0 0045159
P. insidiosumPMS1HumanoTailândiaKammarnjesadakul, et al., 2011GQ45158 6Ph. sojaeFu-P12- 1SojaJapãoDQ07141 	P. Insidiosum	FIVING	Humano	Tallanula		GQ45156
P. Instatiosum PMS1 Humano Parametrial Rammanijesadaku, et al., 2011 GG43136 Ph. sojae Fu-P12- 1 Soja Japão DQ07141 L. giganteum Mosquito Carolina do Norte - FUA Schurcko, et al., 2013 AF086697	D insidiosum	DMS1	Humana	Tailândia	Kommorniosodokul	4
Ph. sojaeFu-P12- 1SojaJapãoDQ07141 6L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697			Turnano	rallariula	naminalijesauakul, ot al. 2011	6040100 6
IntervisionIntervisionIntervisionIntervisionIntervision116L. giganteumMosquitoCarolina do Norte - FUASchurcko, et al., 2013AF086697	Ph soize	Fu-P12-	Soia	lanão	σι αι., 2011	
L. giganteum Mosquito Carolina do Norte - FUA Schurcko, et al., 2013 AF086697	1 11. SUJAE	1	Obja	Japau		6
FUA 2013		1	Mosquito	Carolina do Norte -	Schurcko et al	AF086697
			mosquito	EUA	2013	/1 000037

P. catenulatum = Pythium catenulatum Ph. sojae = Phythopthora sojae L. giganteun = Lagenideum giganteum Fonte: Elaborada pela autora

Quadro 5: Lista de isolados de *Pythium insidiosum* empregados para as análises filogenéticas da região D1-D2.

Espécie	Isolado	Fonte	Origem	referência	n° acesso Genbank
P. insidiosum	B-01	Humano	Paraguaçú Paulista/SP –Brasil	presente trabalho	KP842852
P. insidiosum	Eq-2	Equino	Jaú/SP – Brasil	presente trabalho	KP842853
P. insidiosum	Eq-3	Equino	Barra Bonita/SP – Brasil	presente trabalho	KP842854
P. insidiosum	Eq-4	Equino	Itápolis/SP- Brasil	presente trabalho	KP842855
P. insidiosum	Eq-5	Equino	Porto Feliz/SP – Brasil	presente trabalho	KP842856
P. insidiosum	Eq-6	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842857
P. insidiosum	Eq-7	Equino	Anhembi/SP - Brasil	presente trabalho	KP842858
P. insidiosum	Eq-8	Equino	Paranapanema/S P – Brasil	presente trabalho	KP842859
P. insidiosum	Eq-9	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842860
P. insidiosum	Eq-10	Equino	Paranapanema/S P – Brasil	presente trabalho	KP842861
P. insidiosum	Eq-11	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842862
P. insidiosum	Eq-12	Equino	Bofete/SP – Brasil	presente trabalho	KP842863
P. insidiosum	Eq-13	Equino	Piracicaba/SP - Brasil	presente trabalho	KP842864
P. insidiosum	Eq-15	Equino	Igaraçú do Tietê/SP – Brasil	presente trabalho	KP842865
P. insidiosum	Eq-16	Equino	Pereiras/SP – Brasil	presente trabalho	KP842866
P. insidiosum	Eq-20	Equino	Jaú/SP – Brasil	presente trabalho	KP842867
P. insidiosum	Eq-21	Equino	Laranjal Paulista/SP – Brasil	presente trabalho	KP842868
P. insidiosum	Eq-22	Equino	Araçatuba/SP - Brasil	presente trabalho	KP842869
P. insidiosum	Eq-24	Equino	São Pedro/SP – Brasil	presente trabalho	KP842870
P. insidiosum	Cão	Canino	Boituva/SP – Brasil	presente trabalho	KP842871

C. albicans = Candida albicans

Elabora pela autora

5 CONCLUSÃO

De acordo com a análise das árvores filogenéticas, pode-se concluir que a região ITS, não é a mais adequada para avaliar uma variabilidade intraespecífica. A região do citocromo c oxidadase II (COX-II), indica ser um melhor marcador molecular, para separar os isolados de acordo com a origem geográfica, além de permitir melhor avaliação intraespecífica. A análise da região D1-D2 mostrou alta percentagem de homologia com os dados do GenBank, evidenciando ser uma boa região para auxiliar na identificação molecular de *P. insidiosum*.

REFERÊNCIAS BIBLIOGRAFICAS

ALEXOPOULOS, C.J.; MIMS, C.W.; BLACKWELL, M. Introductory Mycology.4. Ed. New Yoirk: John Wiley & sons, Inc., 1996.

AVISE, J. C.; ARNOLD, J.; BALL, R.M.E.; BERMINGHAM, LAMB, T.; NEIGEL, J.E.; REEB, C.S.; SAUNDERS, N.C. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. **Ann. Rev. Ecol. Syst.**, v.18, p. 489-522, 1987.

AZEVEDO, M.I.; BOTTON, S.A.; PEREIRA, D.I.B.; ROBE, L.J.; JESUS, F.P.K.; MAHL, C.D.; COSTA, M.M.; ALVES, S.H.; SANTURIO, J.M. Phylogenetic relationships of Brazilian isolates of *Pythium insidiosum* based on ITS rDNA and cytochrome oxidase II gene sequences. **Vet. Microbiol.**, v. 159, p. 141- 148, 2012.

BIRLEY, A.J.; CROFT, J.H. **Mitocondrial DNAs and Philogenetics Relationships:** Evolution. In: DUTTA, S.K.; PH, D. **DNA Systematics:** Boca Raton, Florida: Crc, Press, 1988, p.107-139.

BOSCO, S.M.G.; BAGAGLI, E.; ARAÚJO Jr.; J.P.; et al. Human pythiosis Brazil. **Emerg. Infect. Dis.**, v.11, p. 715-717, 2005.

BRIARD, M.; DUTERTRE, M.; ROUXEL, F.; BRYGOO, Y. Ribosomal RNA sequence divergence within the Pythiaceae. **Mycol. Res**., v. 99, p. 1119-27, 1995.

CALVANO, T.P.; BLATZ, P.J.; VENTO, T.J.; WICKES, B.L.; SUTTON, D.A.; THOMPSON. E.H.; WHITE, C.E.; RENZ, E.M; HOSPENTHAL, D.R. *Pythium aphanidermatum* Infection following Combat Trauma. **J. Clin. Microbio**., v.49, p. 3710–3713, 2011.

De COCK, A. W. A. M.; MENDOZA, L.; PADHYE, A. A.; AJELLO, L.; KAUFMAN, L. *Pythium insidiosum sp.* nov.; the etiologic agent of pythiosis. **J. Clin. Microbiol**.,v. 25, p.344-9, 1987.

DICK M.W. Keys to *Pythium.* Reading, UK: **University of Reading, School of Plant Science, Department of Botany**, p.64, 1990.

ECHEVERRIGARAY, S.; RANDON, M.; da SILVA, K.;ZACARIA, J.; DELAMARE, A.P. Identification and characterization of non-saccharomyces spoilage yeasts isolated from Brazilian wines. **World J. Microbiol. Biotechnol.**, v. 29, p. 1019-27, 2013.

GAASTRA, W.; LIPMAN, L.J.A.; De COCK, A.W.A.M.; EXEL, E.T.; PEGGE, R.B.G.; SCHEURWATEr, R.V.; MENDOZA, L. *Pythium insidiosum*: an over-view. **Vet. Microbiol.**, v.146, p. 1–16, 2010.

GANDHI, S.R.; Weete, J.D. Production of polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus *Pythium ultimum*. J. Gen. Microbiol., v.137, p.1825-1830, 1991.

GARZON, C.D.; YANEZ, J.M.; MOORMAN, G.W. *Pythium cryptoirregulare*, a new species within the *P. irregulare* complex. **Mycologia**, v.99, p.291–301, 2007.

GROOTERS, A.M.; GEE, M.K. Development of a nested polymerase chain reaction assay for the detection and identification of *Pythium insidiosum*. J. Vet. Intern. Med., v. 16, p. 147-152, 2002.

HAYASHI, T.; SUGITA, T.; HATA, E.; KATSUDA, K.; ZHANG, E.; KIKU, Y.; SUGAWARA, K.; OZAWA, T.; MATSUBARA, T.; ANDO, T.; OBAYASHI, T.; ITO, T.; YABUSAKI, T.; KUDO, K.; YAMAMOTO, H.; KOIWA, M.; OSHIDA, T.; TAGAWA, Y.; KAWAI, K. Molecular-based identification of yeasts isolated from bovine clinical mastitis in Japan. J. Vet. Med. Sci., v. 75, p. 387-390, 2013.

IWEN, P.C.; HINRICHS, S.H.; RUPP, M.E. Utilization of the Internal Transcribed Spacer regions as molecular targets to detect and identify human fungal pathogens. **Med. Mycol.**, v.40, p.87-109, 2002.

JUKES, T.H.; CANTOR, C.R. Evolution of protein molecules. In: MUNRO, H.N, Mammalian Protein Metabolism, New York: Academic Press, 1969, p. 21-132.

KAMMARNJESADAKUL, P.; PALAGA, T.; SRITUNYALUCKSANA, K.; MENDOZA, L.; KRAJAEJUN, T.; VANITTANAKOM, N.; TONGCHUSAK, S.; DENDUANGBORIPANT, J.; CHINDAMPORN, A. Phylogenetic analysis of *Pythium insidiosum* Thai strains using cytochrome oxidase II (COX II) DNA coding sequences and Internal Transcribed Spacer Regions (ITS). **Med. Mycol.**, v. 49(3), p. 289-95, 2011.

KIMURA, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. **Journal of Molecular Evolution**, v.16, p.111-120, 1980.

LOHNOO,T.; JONGRUJA, N.; RUJIRAWAT,T.; YINGYON, W.; LERKSUTHIRAT, T.; NAMPOON, U.; KUMSANG, Y.; ONPAEW, P.; CHONGTRAKOOL, P.; KEERATIJARUT, A.; BRANDHORST, T.T.; KRAJAEJUN, T. Efficiency Comparison of Three Methods for Extracting Genomic DNA of the Pathogenic Oomycete *Pythium insidiosum.***J. Med. Assoc. Thai.** V.97. p. 342-348, 2014.

MARQUES, S.A.; BAGAGLI, E.; BOSCO, S.M.G.; CAMARGO, R.M.P.; MARQUES, M.E. *Pythium insidiosum*: relato do primeiro caso de infecção humana no Brasil. **An. Bras. Dermatol.**, v. 81(5), p. 483-5, 2006.

MARTIN, F. Phylogenetic relationships among some *Pythium* species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. **Mycologia**, v. 92, p. 711–727, 2000.

MARTIN, F.N. Linear mitochondrial genome organization in vivo in the genus *Pythium*. **Curr. Genet**., v.28, p.225-234, 1995.

MARTIN, F.N.; LOPER, J.E. Soilborne plant diseases caused by *Pythium* spp.: ecology, epidemiology, and prospects for biological control. **Crit. Rev. P1 Sci.,** v. 18, p.111-181,1999.

MCNABB, S.A.; BOYD, D.A.; BELKHIRI, A.; DICK, M.W.; KLASSEN, G.R. An inverted repeat composes more than three-quarters of the mitochondrial genome in two species of *Pythium*. **Curr. Genet.**, **v.** 12, p.205-208, 1987.

MENDOZA, L.; HERNANDEZ, F.; AJELLO, L. Life cicle of the human and animal oomycete pathogen *Pythium insidiosum*. **J. Clin. Microb**., v.31, p. 2967-2973, 1993. PESAVENTO, P.A.; BARR, B.; RIGGS, S.M.; et al. Cutaneous Pythiosis in a Nestling White-faced Ibis. **Vet. Pathol.**, v. 45, p. 538–541, 2008.

PIRES, L.; BOSCO, S.M.G.; BAPTISTA, M.S.;KURACHI, C. Photodynamic Therapy in Pythium insidiosum – An In Vitro Study of the Correlation of Sensitizer Localization and Cell Death. PloS One, v. 9, 2014.

PIRES, L., BOSCO, S.M.G., SILVA, N.F. JR, KURACHI, C. Photodynamic therapy for pythiosis. **Vet Dermatol.**, v. 24, p. 130-136, 2013.

RAVISHANKAR, J.P.; DAVIS, C.M.; DAVIS, D.J.; Macdonald, E.; MAKSELAN, S.D.; MILLWARD, L.; MONEY, N.P. Mechanics of solid tissue invasion by the mammalian pathogen *Pythium insidiosum*. **Fung. Genet. Biol.**, v. 34, p.167–175, 2001.

SAITOU, N.; NEI. M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. **Molecular Biology and Evolution**, v.4, p. 406-425, 1987.

SANTURIO, J. M.; ALVES, S. H.; PEREIRA, D.B.; ARGENTA, J. S. Pitiose: uma micose emergente. Acta Scientiae Veterinariae, v. 34, p. 1-14, 2006.

SANTURIO, J.M.; MONTEIRO, A.B.; LEAL, A.T.; KOMMERS, G.D.; DE SOUSA, R.N.; CATTO, J.B. Cutaneous Pythiosis insidiosi in calves from the Pantanal region of Brazil. **Mycophatologia**., v. 141, p. 123-25, 1998.

SATOH, K.; MAEDA, M.; UMEDA, Y.; SUGAMATA, M.; MAKIMURA, K. Cryptococcus lacticolor sp. nov. and Rhodotorula oligophaga sp. nov., novel yeasts isolated from the nasal smear microbiota of Queensland koalas kept in Japanese zoological parks. **Antonie Van Leeuwenhoek**, v.104, p. 83-93, 2013.

SCHOCH, C.L.; SEIFERTB, K.A., HUHNDORFC, S.; ROBERTD, V.; SPOUGEA, J.L.; LEVESQUEB, C.A.; CHENB, W., and Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. **PNAS**, v.109. n. 16 p. 6241–6246, 2012.

SCHURCKO, A.; MENDOZA, L.; DeCOCK, A.W.A.M.; Klassen, G.R. Evidence for geographic clusters: Molecular genetic differences among strains of *Pythium insidiosum* from Asia, Australia and Americas are explored. **Mycol**., v. 95, p. 200-208, 2003.

SUPABANDHU J, FISHER MC, MENDOZA L, VANITTANAKOM N. Isolation and identifi cation of the human pathogen *Pythium insidiosum* from environmental samples collected in Thai agricultural areas. **Med Mycol**., v. 46, p. 41-52, 2008.

TAMURA, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. **Molecular Biology and Evolution**, v. 9, p.678-687, 1992.

TAMURA, K.; STECHER, G.; PETERSON, D.; FILIPSKI A.; KUMAR S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, v.30, p. 2725-2729, 2013.

THIANPRASIT, M.; CHAIPRASERT, A.; IMWIDTHAYA, P. Human pythiosis. **Curr. Topics. Med. Mycol.,** v. 7, p. 43-54, 1996.

THONGSRI, Y.; WONGLAKORN, L.; CHAIPRASERT; A.; SVOBODOVA, L.; HAMAL, P.; PAKARASANG, M.; PRARIYACHATIGUL, C. Evaluation for the clinical diagnosis of Pythium insidiosum using a single-tube nested PCR. **Mycopathologia**, v.176, p.369-376, 2013.

TRISCOTT, M.A.; WEEDON, D.; CABANA, E. Human subcutaneous pythiosis. J. Cutaneous Pathol., v. 20, p. 267-71, 1993.

VAN BURIK, J.A.; SCHRECKHISE R.W.; WHITE, T.C.; BOWDEN, R.A.; MYERSON, D. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. **Med. Mycol.**, v.3, p. 299–303, 1998.

VAN DER PLAATS-NITERINK, A.J. Monograph of the genus *Pythium*. **Studies in Mycology**, no. 21, p. 200-239, 1981.

VAZ Jr; ITABAJARA Da Silva. **Bioenergética e Metabolismo:** Mitocôndrias, Cloroplastos e Peroxissomos. In: COOPER, G.M. **A Célula:** Uma Abordagem Molecular. 2.ed. São Paulo: Artmed, 2002, p. 411-444.

VILLA, N.O.; KAGEYAMA, K.; ASANO, T.; SUGA, H. Phylogenetic relation-ships of Pythium and Phytophthora species based on ITS rDNA, cyto-chrome oxidase II and beta-tubulin gene sequences. **Mycol.**, v.98, p.410–422, 2006.

APÊNDICE A - SEQUÊNCIA PARCIAL DE OLIGONUCLEOTÍDIOS DA REGIÃO ITS-1, 5.8S E ITS-2 DO DNA

RIBOSSOMAL DE ISOLADOS DE *Pythium insidiosum*.

isolados	sequência de oligonucleotídeos
B01	GTTCTAAATATGTTCTGTTGCTTCGTCGAAGCGGACTGATCTCTCCCCGAGAATGGTCTTGCGACGGCTTGAGGCTGAACGAAAGGCTTGCT CAGTAACTCGTATGACTCTCGGGTTGTACGGCGGAACTGCTGGCCGATGTCTTTTTTCAAACCCATTTTTACTAAACACTGATCTATACTCCG AGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAAAACGCTGCGAACTGCGATAC GTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGTATGCCTGTATCAGTGTC CGTACATCAAACTTGCCTTTCTTTTTCTGTGTAGTCAGGAATCGAGAATCGAGATGGCAAAATGTGAGGTGTCTCGAGCCGTCCCCTCTTTTTGGGAGAT AGCACGAGTCCCTTTAAATGTACGTTGATCTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTTCAGATTGCTTTGCGCT GGTGGGCGACTTCGGAAAGGACATTAAGGAGAGTGACCTCTATTGGCGGTATGTTAGGCTTCGGCCCGACGTTGCAGCTGACGGGGTGTTGT TTCCGTTCTTTCCTTGAGGTGTACCTGTCGTGTGGAGGTCGAACTGGACGCTGGTTATTGTGTAGTAGAGTATTGCTGCGCCT TCGGGTAAAGAAGGACGACCACTAATTTGGGAACGGAA
Eq-2	CATTACCACCACCTAAAAACTITCCACGTGAACCGGTTCTTAAAAATATGTTTCTTGTGCTTCGTCGAAGCGGACTTGCATTCTCTTCCGGAG AGAATTGGTCCTTGCCGACGCCTTGGAGGCCTGAACCGAAAGGCCTTGCCTCCAGTTGACTTCGTTATGGACTCTTTCGGGTTGTTACCG GTCGGAAACTTGCTGCCGGAATGTTCCTTTTTCAAAACCCCATTTTACTAAACACTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAAT CCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAG TGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGGACGCTGCGAACTGCCGTACATCAAACTTGCCTTTCTTT
Eq-3	AATATGTTCTGTGCTTCGTCGAAGCGGACTGCTCTCTCCCGGAGAATGGTCTTGCGACGGCTTGAGGCTGAACGAAGGCTTGCTCAGTAACT CGTATGACTCTCGGGTTGTACGGCGGAACTGCTAGCCGATGTCTTTTTCAAACCCATTTTACTAAACACTGATCTATACTCCGAGGACGAAAG TCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCGAACTGCGATACGTAATGCGAA TTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGTATGCCTGTATCAGTGTCCGTACATCAA ACTTGCCTTTCTTTTTCTGTGTAGTCAGGAATCGAGATCGAGATGGCAGAATGTGAGGTGTCTCGAGCCGTCCCCTCTTTTTGGGAGATAGCACGAGT CCCTTTAAATGTACGTTGATCTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTTCAGATTGCTTGC
Eq-4	CCAAATTAGTGTCGTCCTCTTTACCCGAAGGCGGTCCAAAGCGGCAGCAATACTCTTACTACACCAATAACCAGCGTTCCAGTTCGACCTCA CACCACGACAGGTACACCCTCAAGGAAAGAACGGAAACAACACCCCCGTCAAGCTGCAACGTCGGGCCGAAGCCTAACATACCGCCAATAG AGGGTCATCTCCTTAATGTCCTTTCCGAAGTCGCCCACCAGCGCAAAGCAATCTGAACAGATCACTGCGTTCGAGCATTACACTTCACTAAG ACACAAGAGAGATCAACGTACATTTAAAGGGACTCGTGCTATCTCCCAAAAAGAGGGGACGGCTCGAGACACCTCACATTCTGCCATCTCGA TTCCTGACTACACAGAAAAAGAAAGGCAAGTTTGATGTACGGACACTGATACAGGCATACTTCCAGGCATAACCCGAAAGTGCAATATGCGT TCAAAATTTCGATGACTCACTGAATCCTGCAATTCGCATTACGTATCGCAGTTCGCAGCGTTTTCATCGATGTGCGAGCCTAGACATCCACTG

	CTGAAAGTTGTTAATGGATTAAAACCAAAGACTTTCGTCCTCGGAGTATAGATCAGTGTTTAGTAAAAATGGGGTTTGAAAAAAACATCGGCT
	CAGCAGTTCCGCCGTACAACCCGAGGAGTCATACGAGTTACTGAGCAGGCTTTCGTTTCAGCCTTCAAGCCGTCGCAAGACCATTCTCGGG
	AGAGAGCAGTTCCGCTTCGACGAAGCACAGAACA
	GCCGCAGTTCTCCGTTCCCAAATTAGTGTCCTCCTCTTTACCCGAGGGCGTCAAAGCGCAACAACACTCTACTACAAAAAACCAGCGTCCT
	TCTCCCCCTCACACACCAGGGGGCACCCCTCGGGGTAGAAAGGAGACACAACACCCCCTCCTGTGCCGCGTGGGGGGCAAACCCTCATATAG
	CCCCTATAGAGGTCCTCTCTTTTGTGTTTTTTCAAAACTCCCCCCCC
	TCAAACACACAAGAGAGAGATCCGCGCATTTTTAGGGGGGACTCGCGCTCTCTCCCAAAAAGAGGGGGGGG
Eq-5	CTCTCTATTTGTGACTACACAAAAAAAAAAAGAGGCGTGTGTTATGTGGACACACTGATACGCGTATATCCCGGCGCATCCCCCGAGAGTGCAA
-	TATGTGGCTCAAAATTTATAAGACACTCTGTCTCGCGCATTTCACAATATATAT
	CATCCTGTGGTGAGAGGTGTATGGGTAAAAAAAAAAAACAACACCCTCTCCCCTCTCAGAATATATAT
	CATATCGCTAGCGCATTTTCCCCCGCAACACCCCCGAGAGTTATAAGAGTTACTGTGAGAGCGTTTTTTCATACCTCTCAAACGTCTCACGAG
	AATATTTTTCCGAGAGAGAGAACCCCCTTTTTCCAAAAACACAAAAAATTTTTTAAAGGGT
	CCACGTGAACCCGTTCTAAATATGTTCTGTGCTTCGTCGAAAGCGGACTGCTCTCTCCGGAGAATGGTTCCTTGCGACCGGCTTGGAAGGCT
	GAACGAAGGGCCTTGCTCAGTGAACTCGTAATGACCTCCTCGGGTTGTTACGGTGGAACTGCTGGCCGATGTCTTTTTTCAAACCCATTTTA
	CTAAACACTGGTCTATACTCCCAGGAACAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGGCTAGGCTCCCACATCCATGA
Fa-6	
-90	
Eq-7	
Ea 9	
Eq-o	

	GAAGCTGCCTCTTCTCCCGGGAGAAATGGTCTTGCGACGGCTTGAGGCTGAACGAAGACTTGCTCAGTAACTCGTATGACTCTCGGGTTGT
	ACGGTGGAACTGCTAGCCGATGTCTTTTCAAACCCATTTTACTAAACACTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTA
	ACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTC
Eq-9	ATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGTATGCCCGTATCAGTGTCCGTACATCAAACTTGCCTTTCTTT
	GTAGTCAGGAATCGAGATGGCAGAATGTGAGGTGTCTCGAGCCGTCCCCTCTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGAT
	CTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTTCAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAG
	GAGATGACCTCTATTGGGCGGTAATGTTAGGCTTTCCGGCCCGACGTTGCAGCTGACGGGGTGTTGTTTCCGTTCTTTCCTT
	AAAAAACTTTCCACGTGAACCGTTCTAAATATGGTTCTGTGCTTCGTCGAAGCGGACTGCATCTCTCCGGAGAATGGTCTTGCGACGGCTTG
	AGGCTGAACGAAGGCCTTGCTCAGTAACTCGTATAGACTCTCTGGGTTGTACGGGGGAACTGCTGGCCCGATGTCTTTTTCAAACCCATTT
	TTACTAAACACTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGAT
	GAAGAACGCTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGC
Eq-10	CTGGAAGTATGCCTGTATCAGTGTCCGTACATCAAACTTGCCTTTCTTT
	GAGCCGTCCCCTCTTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGATCTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAG
	TGATCTGTTCAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAGGAGATGACCTCTATTGGCGGTATGTTAGGCTTCGGCCC
	GACGTTGCAGCTGACGGGGTGTTGTTTCCGTTCTTTCCTTGAGGTGTACCTGTCGTGTGAGGTCGAACTGGACGCTGGTTATTGTGTAGT
	AGAGTATTGCTGCGCTTTGACGCCTTCGGGTAAAGAGGACGACACTAATTTGGGAACGGAAAACTGCGGCTTCTTGCTGCGGCTT
	CATTACCACCACTAAAAAACTTTTGCACGTGAACCGTTCTAAATATTGTTCTGTTGGCTTCGTCGAAGCGGACTGCTCTCTCCCCGGAGAAT
	GGGTTCTTGCCAACCGGCTTGAAGGCTGAAACGAAGGGCCTTGCTCTAAAGTAACTCGGATATGACTCTTCCGGGTTGTTACGGGCCGGAA
	CTGCCTTGGCCGATTGTCTTTTCCAAAACCCATTTTTACTAAACACGGATCTATACTCCAAGGACAAAAGTCTTTGGTTTTAATCCATTAACA
Eg 11	ACTTTCACCAGGGGATGTCTAGGCTCGCACATCAATAAAAAACCCTGCAAACTGCAATACTTAAGGCGATTGGCAGGATCCATGGAGTCATC
Ed-11	AAAATTTTGACCGCATATGGCACTTTCGGGTAATGCCTGGAATTATGCTGGTATCAGTGTCCGTACATCAAACTTGCTTTCCTTTTTCCGGGA
	AGTCAGGAATCGAGATGGCAAAGTGTGAGGTGTCTCAACCCGTTCCCTCTTTTTGGGAAAAAGCACGAGTCCCTTTAATTGTACGTTGATCT
	CTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTTCAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAGGA
	GATGACCTCTATTGGCGGTATGTTAGA
	GTGGAACTGCGAAGATCATACACACACCTAAAAACCTTTCCACCGGTGAACCGGTTCTTAAATTATTGTTCTGTTGCTTCGTCGAAGGCGGAC
	TGCTTCTCTCCCCGAAGATTGGTCCTGAGACGGCTTGAGGCTGAACGAAGGCTTGCTCAGTAACTCGTATGACTCTCGGGTTGTACGGCGG
	AACTGCTAGCCGATGTCTTTTCAAACCCATTTTTACTAAACACTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTT
	TCAGCAGTGGATGTCTAGGCTCGCACATCCAATGAAGAACGCTGCGAACTGCGATACGAAATGCAATTTGCAGAATCCGGGGATCCACGGA
Eg 12	ATTTTTGACCGCATATTGGCCCTTTCGGTTATGGCCGGGAGGTTGGCCTGTTTCGGGGCCCGTACATTAAACTTGGCTTTCTTT
	AGTCAAGAATCCAAATGGGCAAATGTGAGGTGTCTCGAGCCGTCCCCTCTTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGATCT
	CTCTTGTGTCTTAGTGAAGTGTAATGGCTCGAACGCAGTGATCTGTTCAGATTGCTTTGCGCTGGTGGGGCCGACTTCGGAAAGGACATTAA
	GGAGATGACCTCTATTGGCGGTATGTTAGGCTTCCGGCCCGACGTTGCAGCTGACGGGGTGTTGTTTCCGTTCTTTCCTTGAGGTGTACCT
	GTCGTGTGTGGAAGGTCGAACTGGACGCTGGTTATTGTGTAGTAGAGTATTGCTGCGCTTTGACGCCTTCGGGTAAAGAGGACGACACCTA
	ATTTGGGAACGGAAGAACTGCGGCTTCTTGCTGCGGCTTTCTGAACTTTTCAAATTGG
	AAAAACTTTCCACGTGAACCGTTCTAAATATGTCTGTGGCTTCGTCGAAGCGGACTGCTCTCCTCGAGGAAATGGTCTTGCGACGGCCTTGA
	GGCTGAACGAAGGCTTGCTCAGTAACTCGTATGACTCTCGGGTTGTACGGCGGAACTGCTAGCCGAATGTCTTTTCAAACCCATTTTACTA
Eq-13	AACACTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGA
	ACGCTGCGAACTGCGATACGTAATGCGAATTGGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGG
	AAGTATGCCTGTATCAGTGTCCGTACATCAAACTTGCCTTTCTTT

	CGTCCCCTCTTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGATCTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGAT
	CTGTTCAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAGGAGATGACCTCTATTGGCGGTATGTTAGGCTTCGGCCCGACG
	TTGCAGCTGACGGGGTGTTGTTTCCGTTCTTTCCTTG
	TATGTTCTGTGCTTCGTCGAAGCGGACTGCTCTCTCCCGGAGAATGGTCTTGCGACGGCTTGAGGCTGAACGAAGGCTTGCTT
	TCGTATGACTCTCGGGTTGTACGGCGGAACTGCTGGCCGATGTCTTTTCAAAACCCATTTTTACTAAACACTGATCTATACTCCGAGGACGA
Eq-15	AAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCGAACTGCGATACGTAATGC
	GAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGTATGCCTGTATCAGTGTCCGTACAT
	CAAACTTGCCTTTCTTTTCTGTGTAGTCAGGAATCGAGATGGCAGAATGTGAGGTGTCTCGAGCCGTCCCCTCTTTTTGGGAGATAGCACG
	AGTCCCTTTAAATGTACGTTGATCTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTTCAGATTGCTTTGCGCTGGTGGG
	CGACTTCGGAAAGGACATTAAGGAGATGACCTCTATTGGCGGTATGTTAGGCTTCGGCCCGACGTTGCAGCTGACGGGGTGTTGTTTCCGT
	TCTTTCCTTGAGGTGTACCTGTCGTGTGTGAGGTCGAACTGGACGCTGGTTATTGTGTAGTAGAGTATTGCTGCGCTTTGACGCCTTCGGGT
	AAAGAGGACGACACTAATTTTGGGAACGGAGAACTGCGGCTTCTTGCTGCGGCTTTCTGA
	CATTACCACACCTAAAAACTTTCCACGTGAACCGTTCTAAATATGTTCTGTGCTTCGTCGAAGCGGACTGCTCTCCCGGAGAATGGTCTTGC
	GACGGCTTGAGGCTGAACGAAGGCTTGCTCAGTGACTCGTATGACTCTCGGGTTGTACGGCGGAACTGCTGGCCGATGTCTTTTTCAAAC
	ATCGATGAAGAACGCTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGG
Eq-16	TTATGCCTGGAAGTATGCCTGTATCAGTGTCCGTACATCAAACTTGCCTTTCTTT
	TGTCTCGAGCCGTCCCCTCTTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGATCTCTCTTGTGTCTTAGTGAAGTGTAATGCTCGA
	ACGCAGTGATCTGTTCAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAGGAGATGACCTCTATTGGCGGTATGTTAGGCTTC
	GGCCCGACGTTGCAGCTGACGGGGTGTTGTTTCCGTTCTTTCCTTGAGGTGTACCTGTCGTGTGTGAGGTCGAACTGGACGCTGGTTATTG
	TGTAGTAGAGTATTGCTGCGCTTTGACGCCTTCGGGTAAAGAGGACGACACTAATTTGGGAACGGAGAACTG
	CGAAGGCTTGCTCAGTGACTCGTATGACTCTCGGGTTGTACGGTGGAACTGCTGGCCGATGTCTTTTCAAACCCATTTTTACTAAACACTGA
	TCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCG
	AACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTTCGGGTTATGCCTGGAAGTATGCCT
Eq-20	GTATCAGTGTCCGTACATCAAACTTGCCTTTCTTTTCTGTGTAGTCAGGAATCGAGATGGCAGAATGTGAGGTGTCTCGAGCCGTCCCCTCT
Eq-21	

	ACCACCTAAAAAACTTTCCACCGTGAACCGGTCTAAATATGTTCTGTGGCTTCGTTCG
	CCTTGCGGACGGGCTTGGAGGCCTGAACGAAAGGCTTTGCTCCAGTTACCTCCGTAATGACTCTCTCGGGGTTGTTACGGTGGGAACTGCT
	TGCCGGAAGTTTTTTTCAAAACCCAATTTTACTAAACACTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAG
	CAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCGAACTGCGATACGTAATGCGAATTGGCAGGATTCAGTGAGTCATCGAAATTT
Ea-22	TGAACGCCATATTGCACTTTCGGGTTATGCCTGGAAGTATGCCTGTATCAGTGTCCGTACATCAAACTTGCCTTTCTTT
	GAATCGAGATGGCAGAATGTGAGGTGTCTCGAGCCGTCCCCTCTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGATCTCTCTTG
	TGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTTCAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAGGAGATGAC
	CTCTATTGGCGGTATGTTAGGCTTCGGCCCGACGTTGCAGCTGACGGGGTGTTGTTTCCGTTCTTTCCTTGAGGTGTACCTGTCGTGTGTGAG
	GGTCGAACTGGACGCTGGTT
Eg 24	
E9-24	
	CTGATCTATACTCCGAGGACGAAAGTCTTTGGTTTTAATCCATTAACAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGC
	I GCGAACIGCGA I ACGIAAI GCGAA I I GCAGGA I I CAGIGAGI CAI CGAAA I I I I GAACGCA I A I I GCACII I CGGGI I A I GCCI GGAAGIA I
Cão	GCCIGTATCAGIGTCCGTACATCAAACTTGCCTTTCTTTTTCTGTGTAGTCAGGAATCGAGATGGCAGAATGTGAGGTGTCTCGAGCCGTCC
	CCTCTTTTTTGGGAGATAGCACGAGTCCCTTTAAATGTACGTTGATCTCTTCTTGTGTCTTAGTGAAGTGTAATGCTCGAACGCAGTGATCTGTT
	CAGATTGCTTTGCGCTGGTGGGCGACTTCGGAAAGGACATTAAGGAGATGACCTCTATTGGCGGTATGTTAGGCTTCGGCCCGACGTTGCA
	GCTGACGGGGTGTTGTTTCCGTTCTTTCCTTGAGGTGTACCTGTCGTGTGTGAGGTCGAACTGGACGCTGGTTATTGTGTAGTAGAGTATTG
	CTGCGCTTTGACGCCTTCGGGTAAAGAGGACGACACTAATTTGGGAACGGAAAACTGCGGCTTCTTGCTGCGGCTTTTCTGAACTTTTCAA
	ATTGGACCTGATATCAG

APÊNDICE B - SEQUÊNCIA PARCIAL DE OLIGONUCLEOTÍDIOS DA CITOCROMO C OXIDASE (COX-II) DO DNA MITOCONDRIAL DE ISOLADOS DE *Pythium insidiosum.*

isolados	sequência de oligonucleotídeos
	TTTTATTATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGA
	TGCTGTAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCT
B01	TGAACCATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTT
DUI	AAAGTAATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAG
	TCCAAATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAACAAAAACAGTTACAATAATTAAAAAAAAAAACATTAGATCATGGTGAAAGT
	ATATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCT
	GTAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAA
Eq.2	CCATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAA
LY 2	GTAATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCC
	AAATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	CAAAAACAGTTACAATAATTAAAAAAAAACATTAGATCATGGTGAAAGT
	CTTTTAATATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAG
Eq-3	I I GAACCA IA I AAC IA I CAAAAA I I AAAGG I I CG I CAGCAAA I I C I AAA I IA I CAGAA I A I I CA I AAC I CCAA I ACCA I I GAC I ACCAA I I AC I I I
-90	TAAAGTAATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTA
	GICCAAAIIAIIICIAIAGIAGCACCAIGAACAAAIGIIGCIGGAAIIGGAIIIIIIII
Ea-4	
	A TAA TAGGA TCAA TGA TTTCA TCCA TAGAA TA TAA TAA AGCAA AAGA TGGAACAGC TAC TG TTAA TAA AA TTAA TGC TGGAA TAG TAG TAG TCCAA
Eq-5	
	TTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATGGGATTTTTTTT
Ea-6	
•	

	GAACCATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTT
	AAAGTAATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAG
	TCCAAATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAACAAAAACAGTTACAATAATTAAAAAAAAAAACATTAGATCATGGTGAAAGT
	TATACATAGAAGTTTGATTTAAACGACCAGGACAAGCGTCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCTGATGCTGT
	AATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAACC
Eq.7	ATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAAGTA
Eq-1	ATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAAA
	TTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATGGGATTTTTTTT
	AAAACAGTTACAATAATTAAAAAAAAACATTAGATCATGGTGAAAGTTAATAAT
	TATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCTG
	TAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAAC
Eq-8	CATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAAGT
Ľq⁼o	AATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAA
	ATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAAACAGTTACAATAATTAAAAAAAAAAACATTAGATCATGGTGAAAGT
	TATACATAGAAGTTTGATTTAAACGACCAGGACAAGCGTCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCTGATGCTGT
	AATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAACC
	ATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAAGTA
Eq-9	ATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAAA
	TTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATGGGATTTTTTTT
	AAAACAGTTACAATAATTAAAAAAAAAACATTAGATCATGGTGAAAGT
	TATACATAGAAGTTTGATTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCTGT
	AATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAACC
Eq.10	ATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAAGTA
LYIU	ATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAAA
	TTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAACAGTTACAATAATTAAAAAAAAAAACATTAGATCATGGTGAAAGTTAATAAT
	TATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCTG
	TAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAAC
Eq-11	
	AATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAA
	ATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAAACAGTTACAATAATTAAAAAAAAAAACATTAGATCATGGTGAAAGT
	TATACATAGAAGTTTGATTTAAACGGCCAGGACAAGCGTCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCTG
Eq.12	
LY-12	
	AATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAA

	ATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
Eq-13	
Ea-15	
_9.0	AATAA TAGGA TCAA TGATTTCA TCCA TAGAA TATAA AAGCAAAAGA TGGAACAGC TACTGTTAA TAAAA TTAA TGC TGGAA TAGTAGTCCAA
	AGAIGCIGIAATIAAAACICIAATAIGACIATIIGIIGGIACAACIACICIATIAICIACIICIAATAAICIAAATIGACCIATIICIAAAICAT
Eq-16	
E9 10	
	GTAGTCCAAATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	TATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAAACATCAGATGCTG
	ТААТТААААСТСТААТАТGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTCTGAAC
Eq.20	CATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAAGT
LY 20	AATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAA
	ATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAAACAGTTACAATAATTAAAAAAAAACATTAGATCATGGTGAAAGT
	AGATGCTGTAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATT
Eq.21	TTCTTGAACCATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTA
LY-21	
	GTAGTCCAAATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	CAACAAACAAAAACAGTTACAATAATTAAAAAAAAAACATTAGATCATGGTGAAAGT
Eq-22	TATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCTG
	TAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAAC
	AATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAA
	ATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAAACAGTTACAATAATTAAAAAAAAAACATTAGATCATGGTGAAAGT

Eq-24	ATATACATAGAAGTTTGGTTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCT
	GTAATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAATCATTTTCTTGAA
	CCATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATACTTTTAAA
	GTAATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCC
	AAATTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	CAAAAACAGTTACAATAATTAAAAAAAAAACATTAGATCATGGTGAAAGTTAATAAT
	TATACATAGAAGTTTGATTTAAACGGCCAGGACAAGCATCTAATTTAATACCTAAAGAAGGAATAGCCCATGAATGTAAAACATCAGATGCTGT
	AATTAAAACTCTAATATGACTATTTGTTGGTACAACTACTCTATTATCTACTTCTAATAATCTAAATTGACCTATTTCTAAAATCATTTTCTTGAACC
Cão	ATATAACTATCAAAAATTAAAGGTTCGTCAGCAAATTCTAAATTATCAGAATATTCATAACTCCAATACCATTGACTACCAATTACTTTTAAAGTA
	ATAATAGGATCAATGATTTCATCCATAGAATATAATAAAGCAAAAGATGGAACAGCTACTGTTAATAAAATTAATGCTGGAATAGTAGTCCAAA
	TTATTTCTATAGTAGCACCATGAACAAATGTTGCTGGAATTGGATTTTTTTT
	AAACAGTTACAATAATTAAAAAAAAAAACATTAGATCATGGTGAAAGT

APÊNDICE C - SEQUÊNCIA PARCIAL DE OLIGONUCLEOTÍDIOS DA REGIÃO D1-D2 DA SUBUNIDADE 28S DO DNA

RIBOSSOMAL DE ISOLADOS DE *Pythium insidiosum*.

isolados	sequência de oligonucleotídeos
	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATA
	AGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTT
	TGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGAT
B01	GAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
DUT	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTTGC
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
	ATCGGGCGATTGAGATCTGTAGTAACTTGTTGCCGT
	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATA
	AGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTT
	TGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGAT
Eq-2	GAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
L Y Z	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTTGC
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATA
	AGTICCTIGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTCTTGAGTCGCGTIGTT
	I GGGAA IGCAGCGCAAAG I AGG I GG I AAA I I CCA I C I AAAGC I AAA I A I I GG I GCGAGACCGA I AGCGAACAAG I ACCG I GAGGGAAAAGA I
Eq-3	GAAAAGAACIIIGAAAAGAGAGIIAAAGAGIACCIGAAACIGCIGAAAGGGAAICGAAICGIIICCAGIGICIAIAAICCAIGACAIAIIICA
-90	
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGGACTCTCGTCTGGTTGGCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
Eq-4	
	AGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGT
	GAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGATCG
	TAGTGGTCACATCGGGGCGATTGAGATCTGTAGTAACTTGTTGCCGT

Eq-5	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGGTTGTGCGGGGATA
	AGTICCTIGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTT
	TGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAAGAT
	GAAAAGAACTITIGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCTGGCGTTGTTGTGCGTTTGCTTGC
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
	ATCGGGGCGATTGAGATCTGTAGTAACTTGT
	CCCTAGTAACGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGT
	CAGTGCGGTTGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACAC
	GTTTTCTTTGAGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAA
Eas	CAAGTACCGTGAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGAG
Eq-0	CTATAATCCATGACATATTTCATTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTGTGCGTTTGCTTGC
	GGTGCCCTGTGTTGTGGTGGGACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GCCTGGCAGTTAGTAGTCGTGGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAG
	CTTGCTGTGCTAGTGGTCACATCGGGCGATTGAGATCTGTAGTAACTTGT
	CGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGT
	TGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTG
	AGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGT
	GAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCAT
Eq-7	GACATATTTCATTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTTGC
	GTTGTGGTGGGACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	TAGTAGTCGTGGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGC
	TAGTGGTCACATCGGGCGATTGAGATCTGTAGTAACTTGT
	CGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGT
	TGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTG
	AGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGT
	GAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCAT
Eq-8	GACATATTTCATTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTTGC
	GTTGTGGTGGGACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	TAGTAGTCGTGGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGC
	TAGTGGTCACATCGGGCGATTGAGATCTGTAGTAACT
	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATA
	AGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTT
Eq-9	TGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGAT
	GAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTGCTG
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC

	ATCGGGCGATTGAGATCTGTAGTAACTTGTTGCCGTTCGG
	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATA
	AGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTT
	TGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGAT
Eq-10	GAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTGGTGCCCTGTGTTGT
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
	ATCGGGCGATTGAGATCTGTAGTAACTTGT
	GCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATA
	AGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTT
	TGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGAT
Fa-11	GAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
-9	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTGCTTGC
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
	CGGCGAGTGAAGCGGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGT
	AGTCGCGTTGTTTGGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGT
Fa-12	
-9 -2	GACATATTICATIGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTGCTGCTGGTGCCCTGT
Ea-13	
Eq-15	

	TAGTAGTCGTGGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGC
	TAGTGGTCACATCGGGGCGATTGAGATCTGTAGTAACTTGT
	CCCTAGTAACGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGT
	CAGTGCGGTTGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACAC
Eq-16	GTTTTCTTTGAGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAA
LYIU	CAAGTACCGTGAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGAG
	GGTGCCCTGTGTTGTGGTGGGACGTCAGAGTCAGTTCGTA
	CGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGT
	TGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTG
	AGICGCGIIGIIIGGGAAIGCAGCGCAAAGIAGGIGGIAAAIICCAICIAAAGCIAAAIAIIGGIGCGAGACCGAIAGCGAACAAGIACCGI
Ea-20	GAGGGAAAGAIGAAAAGAACIIIGAAAAGAGAGAIAAAGAGAGIACCIGAAACIGCIGAAAGGGAAICGAICG
-9 -0	
	GTTGTGGTGGGACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
Eq-21	
•	
	GAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCA
Eq-22	TTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCCTCGGCGTTGTTGTGCGTTGCTTGC
	GACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	GGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCAC
	ATCGGGGCGATTGAGATCTGTAGTAACTTGTTGCCGT
	CGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTGCAGGTTCTGCATGGCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGT
Eq-24	TGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGGTGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTG
	AGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGT
	GAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCAT
	GACATATTTCATTGGCGCGTGAATGCGTGCAGCGTTTTGGAAGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTTGC
	GTTGTGGTGGGACGTCAGAGTCAGTTCGTATGCCGCGGGAAATGGCTGTCAGGGAGGTAGGT
	TAGTAGTCGTGGTTGGGACTGAGGTGCCTACAACGCGCTTTCGAGTCTGCGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGC

	TAGTGGTCACATCGGGCGATTGAGATCTGTAGTAACTTGTTGCCGT
	GCATATCAATAAGCGGAGGAAAAAGAAACTAACAAGGATTCCCCTAGTAACGGCGAGTGAAGCGGGATGAGCTCAAGCTTAAAATCTCTGTG
	CAGGTTCTGCATGCGTCGAATTGTAGTCTATGGAGGCGATGTCAGTGCGGTTGTGCGGGATAAGTTCCTTGGAAGAGGACAGCATCGAGGG
	TGATACTCCCGTATGTGCCTGTACAGCTGCGCGTACGACACGTTTTCTTTGAGTCGCGTTGTTTGGGAATGCAGCGCAAAGTAGGTGGTAAA
	TTCCATCTAAAGCTAAATATTGGTGCGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGATGAAAAGAACTTTGAAAAGAGAGTTAAAGAG
Cão	TACCTGAAACTGCTGAAAGGGAATCGAATCGTTTCCAGTGTCTATAATCCATGACATATTTCATTGGCGCGTGAATGCGTGCAGCGTTTTGGA
	AGTGGGTTTCCTCTCCTGGCGTTGTTGTGCGTTTGCTTGC
	AATGGCTGTCAGGGAGGTAGGTCGCTTCGGTGATTGTTATAGCCTGGCAGTTAGTAGTCGTGGTTGGGACTGAGGTGCCTACAACGCGCTT
	TCGAGTCTGCGGGGACTCTCGTCTGGTTGCCTGCTTGGACAGCTTGCTGTGCTAGTGGTCACATCGGGCGATTGAGATCTGTAGTAACTTGTT
	GCCGTTCGGACTGACGAATTGTTGGCGG